【高等数学笔记】变限积分求导问题

首先我们祭出最强大的武器——定义:

定义 如果在区间 I I I上, F ′ ( x ) = f ( x ) F'(x)=f(x) F(x)=f(x),则称 F F F f f f I I I上的一个原函数。
定理(Newton-Leibniz公式) f ∈ R [ a , b ] f \in \mathcal{R}[a,b] fR[a,b],且 f f f在区间 [ a , b ] [a,b] [a,b]上有一个原函数 F F F,则 ∫ a b f ( x ) d x = F ( b ) − F ( a ) \int_{a}^{b}f(x)\text{d}x=F(b)-F(a) abf(x)dx=F(b)F(a)
定理(定积分的换元法) 设函数 f f f在有限区间 I I I上连续, x = ψ ( t ) x=\psi(t) x=ψ(t)在区间 [ α , β ] [\alpha,\beta] [α,β](或 [ β , α ] [\beta,\alpha] [β,α])上有连续导数,且 ψ \psi ψ的值域 R ( ψ ) ⊆ I R(\psi)\subseteq I R(ψ)I,则 ∫ a b f ( x ) d x = ∫ α β f [ ψ ( t ) ] ψ ′ ( t ) d t \int_{a}^{b}f(x)\text{d}x=\int_{\alpha}^{\beta}f[\psi(t)]\psi'(t)\text{d}t abf(x)dx=αβf[ψ(t)]ψ(t)dt,其中 a = ψ ( α ) , b = ψ ( β ) a=\psi(\alpha),b=\psi(\beta) a=ψ(α),b=ψ(β)

一、形如 ϕ ( x ) = ∫ a ( x ) b ( x ) f ( t ) d t \phi(x)=\int_{a(x)}^{b(x)}{f(t)\text{d}t} ϕ(x)=a(x)b(x)f(t)dt的问题

假设 f ( t ) f(t) f(t)有原函数 F ( t ) F(t) F(t),则 ϕ ( x ) = F ( b ( x ) ) − F ( a ( x ) ) \phi(x)=F(b(x))-F(a(x)) ϕ(x)=F(b(x))F(a(x))
ϕ ′ ( x ) = F ′ ( b ( x ) ) b ′ ( x ) − F ′ ( a ( x ) ) a ′ ( x ) = f ( b ( x ) ) b ′ ( x ) − f ( a ( x ) ) a ′ ( x ) \begin{aligned} \phi'(x)&=F'(b(x))b'(x)-F'(a(x))a'(x)\\&=f(b(x))b'(x)-f(a(x))a'(x) \end{aligned} ϕ(x)=F(b(x))b(x)F(a(x))a(x)=f(b(x))b(x)f(a(x))a(x)

二、形如 ϕ ( x ) = ∫ a ( x ) b ( x ) f ( x t ) d t \phi(x)=\int_{a(x)}^{b(x)}f(xt)\text{d}t ϕ(x)=a(x)b(x)f(xt)dt的问题

首先, ϕ ( x ) \phi(x) ϕ(x) x x x的函数,但给定一个 x x x x , a ( x ) , b ( x ) x,a(x),b(x) x,a(x),b(x)都是常数,故此时 f ( x t ) f(xt) f(xt)仅为 t t t的函数。
例如, ϕ ( x ) = ∫ sin ⁡ x cos ⁡ x x t d t \phi(x)=\int_{\sin{x}}^{\cos{x}}xt\text{d}t ϕ(x)=sinxcosxxtdt,当给定 x = π 2 x=\frac{\pi}{2} x=2π时,有 ϕ ( x ) = ∫ 1 0 π 2 t d t \phi(x)=\int_{1}^{0}\frac{\pi}{2}t\text{d}t ϕ(x)=102πtdt,仅为 t t t的函数。再给定 x = 0 x=0 x=0,有 ϕ ( x ) = ∫ 0 1 0 t d t \phi(x)=\int_{0}^{1}0t\text{d}t ϕ(x)=010tdt。将 x x x取遍全体实数,对于一个 x x x,总可以算出对应的 ∫ a ( x ) b ( x ) f ( x t ) d t \int_{a(x)}^{b(x)}f(xt)\text{d}t a(x)b(x)f(xt)dt,这样就可以得到 ϕ ( x ) \phi(x) ϕ(x)
那么对于这个问题,仍然设 f f f有原函数 F F F。利用换元法,令 u = x t u=xt u=xt,考虑给定一个 x x x,即将 x x x视为常数,则 d u = x d t \text{d}u=x\text{d}t du=xdt。在定积分的换元法中,令 t = ψ ( u ) t=\psi(u) t=ψ(u),则 t = ψ ( u ) = u x t=\psi(u)=\frac{u}{x} t=ψ(u)=xu u = ψ − 1 ( t ) = x t u=\psi^{-1}(t)=xt u=ψ1(t)=xt。相应地,积分上限变成 ψ − 1 ( b ( x ) ) = x b ( x ) \psi^{-1}(b(x))=xb(x) ψ1(b(x))=xb(x),下限变成 ψ − 1 ( a ( x ) ) = x a ( x ) \psi^{-1}(a(x))=xa(x) ψ1(a(x))=xa(x)
ϕ ( x ) = ∫ a ( x ) b ( x ) f ( u ) d t = ∫ a ( x ) b ( x ) f ( u ) d ( u x ) = 1 x ∫ x a ( x ) x b ( x ) f ( u ) d u \begin{aligned} \phi(x)&=\int_{a(x)}^{b(x)}f(u)\text{d}t\\ &=\int_{a(x)}^{b(x)}f(u)\text{d}\left(\frac{u}{x}\right)\\ &=\frac{1}{x}\int_{xa(x)}^{xb(x)}f(u)\text{d}u \end{aligned} ϕ(x)=a(x)b(x)f(u)dt=a(x)b(x)f(u)d(xu)=x1xa(x)xb(x)f(u)du
那么
ϕ ′ ( x ) = − 1 x 2 ∫ x a ( x ) x b ( x ) f ( u ) d u + 1 x { f [ x b ( x ) ] [ b ( x ) + x b ′ ( x ) ] − f [ x a ( x ) ] [ a ( x ) + x a ′ ( x ) ] } \begin{aligned} \phi'(x)=&-\frac{1}{x^2}\int_{xa(x)}^{xb(x)}f(u)\text{d}u+\\&\frac{1}{x}\{f[xb(x)][b(x)+xb'(x)]-f[xa(x)][a(x)+xa'(x)]\} \end{aligned} ϕ(x)=x21xa(x)xb(x)f(u)du+x1{f[xb(x)][b(x)+xb(x)]f[xa(x)][a(x)+xa(x)]}

总结:遇到多个变量的时候,一定要先固定其中的一个变量,使其成为常数,然后再进行研究就简单多了。

  • 1
    点赞
  • 7
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值