【高等数学基础进阶】不定积分-part1

本文详细介绍了不定积分的概念、性质及其在高等数学中的应用。从原函数存在定理出发,探讨了不定积分的几何意义,接着阐述了不定积分的基本公式,并通过实例解析了第一类换元法、第二类换元法和分部积分法这三种主要积分方法。文章还涉及了有理函数、三角有理式和简单无理函数的积分计算技巧,为学习者提供了丰富的实践案例。
摘要由CSDN通过智能技术生成

一、不定积分的概念与性质

原函数: F ′ ( x ) = f ( x ) F'(x)=f(x) F(x)=f(x)

不定积分: ∫ f ( x ) d x = F ( x ) + C \int f(x)dx=F(x)+C f(x)dx=F(x)+C

不定积分的几何意义:表示一簇积分曲线,这簇积分曲线对应于横坐标 x x x处的切线都相互平行

原函数存在定理

定理1:若 f ( x ) f(x) f(x)在区间 I I I上连续,则 f ( x ) f(x) f(x)在区间 I I I上一定存在原函数

定理2: f ( x ) f(x) f(x)在区间 I I I上有第一类间断点,则 f ( x ) f(x) f(x)在区间 I I I上没有原函数

例1: g ( x ) = sgn  x = { − 1 x < 0 0 x = 0 1 x > 0 g(x)=\text{sgn }x=\begin{cases}-1&x<0\\0&x=0\\1&x>0\end{cases} g(x)=sgn x= 101x<0x=0x>0

设存在原函数 F ( x ) F(x) F(x),根据分段函数
F ( x ) = { − x + C 1 x < 0 x + C 2 x > 0 F(x)=\begin{cases} -x+C_{1} &x<0\\ x+C_{2}&x>0 \end{cases} F(x)={ x+C1x+C2x<0x>0
由于 F ( x ) F(x) F(x) x = 0 x=0 x=0处连续,则 C 1 = C 2 = C C_{1}=C_{2}=C C1=C2=C,有
F ( x ) = { − x + C x < 0 x + C x > 0 = ∣ x ∣ + C F(x)=\begin{cases} -x+C&x<0 \\ x+C&x>0 \end{cases}=|x|+C F(x)={ x+Cx+Cx<0x>0=x+C
根据定义 F ′ ( x ) = g ( x ) F'(x)=g(x) F(x)=g(x),显然 F ′ ( 0 ) F'(0) F(0)不存在,因此 g ( x ) g(x) g(x)不存在原函数
即,若 f ( x ) f(x) f(x)在区间 I I I上有第一类间断点,则 f ( x ) f(x) f(x)在区间 I I I上没有原函数

不定积分的性质

( ∫ f ( x ) d x ) ′ = f ( x ) d ∫ f ( x ) d x = f ( x ) d x ∫ f ′ ( x ) d x = f ( x ) + C ∫ d f ( x ) = f ( x ) + C ∫ [ f ( x ) ± g ( x ) ] d x = ∫ f ( x ) d x ± ∫ g ( x ) d x \begin{gathered} \begin{aligned} &(\int f(x)dx)'=f(x)\quad &d\int f(x)dx=f(x)dx\\ &\int f'(x)dx=f(x)+C&\int df(x)=f(x)+C \end{aligned}\\ \int[f(x)\pm g(x)]dx=\int f(x)dx\pm\int g(x)dx \end{gathered} (f(x)dx)=f(x)f(x)dx=f(x)+Cdf(x)dx=f(x)dxdf(x)=f(x)+C[f(x)±g(x)]dx=f(x)dx±g(x)dx

二、不定积分的基本公式

∫ 0 d x = C ∫ x α d x = 1 α + 1 x α + 1 + C ∫ 1 x d x = ln ⁡ ∣ x ∣ + C ∫ a x d x = a x ln ⁡ a + C ∫ e x d = e x + C ∫ sin ⁡ x d x = − cos ⁡ x + C ∫ cos ⁡ x d x = sin ⁡ x + C ∫ sec ⁡ 2 x d x = tan ⁡ x + C ∫ csc ⁡ 2 x d x = − cot ⁡ x + C ∫ 1 cos ⁡ 2 x d x = tan ⁡ x + C ∫ 1 sin ⁡ 2 x d x = − cot ⁡ x + C ∫ sec ⁡ x tan ⁡ x d x = sec ⁡ x + C ∫ csc ⁡ x cot ⁡ x d x = − csc ⁡ x + C ∫ 1 1 − x 2 d x = arcsin ⁡ x + C ∫ 1 1 + x 2 d x = arctan ⁡ x + C ∫ 1 a 2 − x 2 d x = arcsin ⁡ x a + C ∫ 1 a 2 + x 2 d x = 1 a arctan ⁡ x a + C ∫ 1 x 2 − a 2 = 1 2 a ln ⁡ ∣ x − a x + a ∣ + C ∫ 1 x 2 + a 2 d x = ln ⁡ ( x + x 2 + a 2 ) + C ∫ 1 x 2 − a 2 d x = ln ⁡ ∣ x + x 2 − a 2 ∣ + C ∫ sec ⁡ x d x = ln ⁡ ∣ sec ⁡ x + tan ⁡ x ∣ + C ∫ csc ⁡ x d x = − ln ⁡ ∣ csc ⁡ x + cot ⁡ x ∣ + C \begin{aligned} \int 0dx&=C\\ \int x^{\alpha} dx&=\frac{1}{\alpha+1}x^{\alpha+1}+C\\ \int \frac{1}x dx&=\ln|x|+C\\ \int a^{x}dx&=\frac{a^{x}}{\ln a}+C\\ \int e^{x}d&=e^{x}+C\\ \int \sin xdx&=-\cos x+C\\ \int \cos xdx&=\sin x+C\\ \int \sec^{2}xdx&=\tan x+C\\ \int \csc^{2}xdx&=-\cot x+C\\ \int \frac{1}{\cos^2 x}dx&=\tan x+C\\ \int \frac{1}{\sin^{2}x}dx&=-\cot x+C\\ \int \sec x\tan xdx&=\sec x+C\\ \int \csc x\cot xdx&=-\csc x+C\\ \int \frac{1}{\sqrt{1-x^2}}dx&=\arcsin x+C\\ \int \frac{1}{1+x^2}dx&=\arctan x+C\\ \int \frac{1}{\sqrt{a^{2}-x^{2}}}dx&=\arcsin \frac{x}{a}+C\\ \int \frac{1}{a^{2}+x^{2}}dx&=\frac{1}{a}\arctan \frac{x}{a}+C\\ \int \frac{1}{x^{2}-a^{2}}&= \frac{1}{2a}\ln| \frac{x-a}{x+a}|+C\\ \int \frac{1}{\sqrt{x^{2}+a^{2}}}dx&=\ln(x+\sqrt{x^{2}+a^{2}})+C\\ \int \frac{1}{\sqrt{x^{2}-a^{2}}}dx&=\ln|x+\sqrt{x^{2}-a^{2}}|+C\\ \int \sec xdx&=\ln|\sec x+\tan x|+C\\ \int \csc xdx&=-\ln|\csc x+\cot x|+C \end{aligned} 0dxxαdxx1dxaxdxexdsinxdxcosxdxsec2xdxcsc2xdxcos2x1dxsin2x1dxsecxtanxdxcscxcotxdx1x2 1dx1+x21dxa2x2 1dxa2+x21dxx2a21x2+a2 1dxx2a2 1dxsecxdxcscxdx=C=α+11xα+1+C=lnx+C=lnaax+C=ex+C=cosx+C=sinx+C=tanx+C=cotx+C=tanx+C=cotx+C=secx+C=cscx+C=arcsinx+C=arctanx+C=arcsinax+C=a1arctanax+C=2a1lnx+axa+C=ln(x+x2+a2 )+C=lnx+x2a2 +C=lnsecx+tanx+C=lncscx+cotx+C

三、三种主要积分法

第一类换元法(凑微分法)

∫ f ( u ) d u = F ( u ) + C \int f(u)du=F(u)+C f(u)du=F(u)+C
∫ f [ ϕ ( x ) ] ϕ ′ ( x ) d x = ∫ f [ ϕ ( x ) ] d ϕ ( x ) = F [ ϕ ( x ) ] + C \int f[\phi(x)]\phi'(x)dx=\int f[\phi(x)]d \phi(x)=F[\phi(x)]+C f[ϕ(x)]ϕ(x)dx=f[ϕ(x)]dϕ(x)=F[ϕ(x)]+C

例2:计算积分 ∫ d x x ( 4 − x ) = ( ) \int \frac{dx}{\sqrt{x(4-x)}}=() x(4x) dx=()

原式 = ∫ d ( x − 2 ) 4 − ( x − 2 ) 2 = arcsin ⁡ x − 2 2 + C 原式 = ∫ d x x 4 − x = 2 ∫ d x 4 − ( x ) 2 = 2 arcsin ⁡ x 2 + C \begin{aligned} 原式&=\int \frac{d(x-2)}{\sqrt{4-(x-2)^{2}}}=\arcsin \frac{x-2}{2}+C\\ 原式&=\int \frac{dx}{\sqrt{x}\sqrt{4-x}}=2\int \frac{d \sqrt{x}}{\sqrt{4-(\sqrt{x})^{2}}}=2\arcsin \frac{\sqrt{x}}{2}+C \end{aligned} 原式原式=4(x2)2 d(x2)=arcsin2x2+C=x 4x dx=24(x )2 dx =2arcsin2x +C

例3:计算积分

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值