【线性代数笔记】秩为1的矩阵的性质

定理1 矩阵 A n × m A_{n\times m} An×m的秩为 1 1 1 ⟺ \Longleftrightarrow A = α β T A=\alpha\beta^T A=αβT,其中 α , β \alpha, \beta α,β分别为 n , m n,m n,m维非零列向量。

证明
必要性:由等价标准型定理知存在可逆矩阵 P , Q P,Q P,Q使得 A = P [ 1 O O O ] Q A=P \begin{bmatrix}1&O\\O&O\end{bmatrix}Q A=P[1OOO]Q,其中 [ 1 O O O ] = [ 1 O ] n × 1 [ 1 O ] 1 × m \begin{bmatrix}1&O\\O&O\end{bmatrix}=\begin{bmatrix}1\\O\end{bmatrix}_{n\times 1}\begin{bmatrix}1&O\end{bmatrix}_{1\times m} [1OOO]=[1O]n×1[1O]1×m
α = P [ 1 O ] n × 1 \alpha=P\begin{bmatrix}1\\O\end{bmatrix}_{n\times 1} α=P[1O]n×1 β T = [ 1 O ] 1 × m Q \beta^T=\begin{bmatrix}1&O\end{bmatrix}_{1\times m}Q βT=[1O]1×mQ,则 A = ( P [ 1 O ] n × 1 ) ( [ 1 O ] 1 × m Q ) = α β T A=\left(P\begin{bmatrix}1\\O\end{bmatrix}_{n\times 1}\right)\left(\begin{bmatrix}1&O\end{bmatrix}_{1\times m}Q\right)=\alpha\beta^T A=(P[1O]n×1)([1O]1×mQ)=αβT
充分性:设 A = α β T A=\alpha\beta^T A=αβT,则由“矩阵越乘秩越小”知 r ( A ) ≤ min ⁡ { r ( α ) , r ( β ) } = 1 r(A)\le \min\{r(\alpha), r(\beta)\}=1 r(A)min{r(α),r(β)}=1。又 α , β \alpha, \beta α,β非零,故 A ≠ O A\ne O A=O,因此 r ( A ) > 0 r(A)>0 r(A)>0 r ( A ) = 1 r(A)=1 r(A)=1

定理2 矩阵 A n × n = α β T A_{n\times n}=\alpha\beta^T An×n=αβT α , β ≠ 0 \alpha,\beta\ne0 α,β=0),则:
(1) ∃ \exists 常数 k k k使得 A 2 = k A A^2=kA A2=kA
(2) A A A的特征值为 β T α , 0 , 0 , … , 0 \beta^T\alpha,0,0,\dots,0 βTα,0,0,,0
(3) 当且仅当 β T α ≠ 0 \beta^T\alpha \ne 0 βTα=0 A A A可以对角化。

证明
(1) A 2 = α β T α β T = α ( β T α ) β T A^2=\alpha\beta^T\alpha\beta^T=\alpha(\beta^T\alpha)\beta^T A2=αβTαβT=α(βTα)βT,而 β T α \beta^T\alpha βTα是数,故可以提出来: A 2 = ( β T α ) α β T = ( β T α ) A A^2=(\beta^T\alpha)\alpha\beta^T=(\beta^T\alpha)A A2=(βTα)αβT=(βTα)A,令 k = β T α k=\beta^T\alpha k=βTα即得 A 2 = k A A^2=kA A2=kA
(2) 由 r ( A ) = 1 r(A)=1 r(A)=1知方程 A x = 0 Ax=0 Ax=0 n − 1 n-1 n1个线性无关的特解,故 0 0 0 A A A的特征值,其几何重数为 n − 1 n-1 n1;又由代数重数大于等于几何重数知 0 0 0的代数重数至少为 n − 1 n-1 n1。同时, A α = α β T α = α ( β T α ) = ( β T α ) α A\alpha=\alpha\beta^T\alpha=\alpha(\beta^T\alpha)=(\beta^T\alpha)\alpha Aα=αβTα=α(βTα)=(βTα)α,因此 β T α \beta^T\alpha βTα A A A的一个特征值, α \alpha α为对应的特征向量。所以 A A A的特征值为 β T α , 0 , 0 , … , 0 \beta^T\alpha,0,0,\dots,0 βTα,0,0,,0(共 n − 1 n-1 n1 0 0 0)。
这个结论也表明: tr ( A ) = β T α \text{tr}(A)=\beta^T\alpha tr(A)=βTα
(3) 当且仅当 β T α ≠ 0 \beta^T\alpha \ne 0 βTα=0时,特征值 0 0 0的代数重数等于几何重数 ( n − 1 ) (n-1) (n1),此时 A A A可对角化。换言之, A A A不可对角化当且仅当向量 α \alpha α β \beta β正交。

  • 4
    点赞
  • 19
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值