【线性代数笔记】幂等矩阵的性质

定义 A n × n A_{n\times n} An×n满足 A 2 = A A^2=A A2=A,则 A A A为幂等矩阵。


定理1 幂等矩阵 A A A的特征值只可能是 0 0 0 1 1 1
证明:设 λ \lambda λ A A A的特征值,则 λ \lambda λ也是 A 2 A^2 A2的特征值,而 A 2 A^2 A2得特征值是 λ 2 \lambda^2 λ2,故 λ 2 = λ \lambda^2=\lambda λ2=λ,即 λ = 0 , 1 \lambda=0,1 λ=0,1


定理2 A A A n n n阶幂等矩阵,则 A A A一定可以对角化。
证明:即证 0 , 1 0,1 0,1的代数重数等于几何重数。
首先, 0 0 0的代数重数大于等于其几何重数 t ≥ n − r ( A ) t\ge n-r(A) tnr(A)
其次, A 2 = A A^2=A A2=A A ( I − A ) = O A(I-A)=O A(IA)=O,则由这篇文章 r ( A ) + r ( I − A ) ≤ n r(A)+r(I-A)\le n r(A)+r(IA)n。又 A + ( I − A ) = I A+(I-A)=I A+(IA)=I,故 r ( A ) + r ( I − A ) ≥ r ( I ) = n r(A)+r(I-A)\ge r(I)=n r(A)+r(IA)r(I)=n。因此 r ( A ) + r ( I − A ) = n r(A)+r(I-A)=n r(A)+r(IA)=n。于是 ( I − A ) x = 0 (I-A)\bm x=0 (IA)x=0的基础解系有 n − r ( I − A ) = r ( A ) n-r(I-A)=r(A) nr(IA)=r(A)个线性无关的特解,即 1 1 1的几何重数为 r ( A ) r(A) r(A),因此 1 1 1的代数重数大于等于 r ( A ) r(A) r(A)
0 0 0 1 1 1的代数重数之和为 n n n,故 0 0 0 1 1 1的代数重数分别为 n − r ( A ) n-r(A) nr(A) r ( A ) r(A) r(A),与几何重数一致。

推论1 n n n阶幂等矩阵 A A A的有 r ( A ) r(A) r(A) 1 1 1 n − r ( A ) n-r(A) nr(A) 0 0 0作为特征值。

推论2 A A A n n n阶幂等矩阵, r ( A ) = r r(A)=r r(A)=r,则一定存在可逆矩阵 P P P使得 P − 1 [ I r O O O ] P = A P^{-1}\begin{bmatrix}I_r&O\\O&O\end{bmatrix}P=A P1[IrOOO]P=A

推论3 A A A为幂等矩阵,则 tr ( A ) = r ( A ) \text{tr}(A)=r(A) tr(A)=r(A)


定理3 n n n阶矩阵 A A A为幂等矩阵,当且仅当 r ( A ) + r ( I − A ) = n r(A)+r(I-A)=n r(A)+r(IA)=n
证明:注意到一个矩阵是零矩阵当且仅当其秩为 0 0 0,因此 A A A为幂等矩阵当且仅当 r ( A − A 2 ) = 0 r(A-A^2)=0 r(AA2)=0
对分块矩阵 [ A O O I − A ] \begin{bmatrix}A&O\\O&I-A\end{bmatrix} [AOOIA]进行分块初等变换: [ A O O I − A ] ⟶ r 2 + r 1 [ A O A I − A ] ⟶ c 2 + c 1 [ A A A I ] ⟶ r 1 − A r 2 [ A − A 2 O A I ] ⟶ c 1 − A c 2 [ A − A 2 O O I ] \begin{bmatrix}A&O\\O&I-A\end{bmatrix} \overset{r_2+r_1}{\LARGE\longrightarrow} \begin{bmatrix}A&O\\A&I-A\end{bmatrix} \overset{c_2+c_1}{\LARGE\longrightarrow} \begin{bmatrix}A&A\\A&I\end{bmatrix} \overset{r_1-Ar_2}{\LARGE\longrightarrow} \begin{bmatrix}A-A^2&O\\A&I\end{bmatrix} \overset{c_1-Ac_2}{\LARGE\longrightarrow} \begin{bmatrix}A-A^2&O\\O&I\end{bmatrix} [AOOIA]r2+r1[AAOIA]c2+c1[AAAI]r1Ar2[AA2AOI]c1Ac2[AA2OOI]由于 r ( [ A O O B ] ) = r ( A ) + r ( B ) r\left(\begin{bmatrix}A&O\\O&B\end{bmatrix}\right)=r(A)+r(B) r([AOOB])=r(A)+r(B),所以我们证明了 r ( A ) + r ( I − A ) = r ( A − A 2 ) + r ( I ) r(A)+r(I-A)=r(A-A^2)+r(I) r(A)+r(IA)=r(AA2)+r(I),即 r ( A − A 2 ) = 0    ⟺    r ( A ) + r ( I − A ) = n r(A-A^2)=0\iff r(A)+r(I-A)=n r(AA2)=0r(A)+r(IA)=n


例题

  1. 证明:设 A A A n × n n\times n n×n矩阵,则存在幂等矩阵 F F F和可逆矩阵 U U U使得 A = F U A=FU A=FU
    证明:设 r ( A ) = r r(A)=r r(A)=r。由等价标准型定理知存在可逆矩阵 P , Q P,Q P,Q使得 A = P [ I r O O O ] Q = P [ I r O O O ] P − 1 P Q A=P\begin{bmatrix}I_r&O\\O&O\end{bmatrix}Q=P\begin{bmatrix}I_r&O\\O&O\end{bmatrix}P^{-1}PQ A=P[IrOOO]Q=P[IrOOO]P1PQ。设 F = P [ I r O O O ] P − 1 F=P\begin{bmatrix}I_r&O\\O&O\end{bmatrix}P^{-1} F=P[IrOOO]P1 U = P Q U=PQ U=PQ即可。
  • 7
    点赞
  • 31
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值