【线性代数】俗说矩阵听课笔记

本文概述了线性代数中的关键概念,如基础解系、矩阵乘法规则、秩的计算、线性相关性、特征值与特征向量、正交化与相似对角化,以及正定二次型的性质。内容涵盖了向量空间、矩阵变换、二次型在几何上的应用等。
摘要由CSDN通过智能技术生成

基础解系的概念

线性方程组的解

6矩阵乘法

矩阵乘法无交换律,运算时需要区分左右

矩阵相当于一个映射,复合映射没有交换律。

8矩阵的性质

矩阵乘法具有结合律的本质原因是复合映射

10初等矩阵和初等行变换

初等行变换

12逆矩阵的求法

 

21行列式和矩阵秩Rank的等价刻画

子式

标准型

利用子式求解矩阵的rank

24零积秩不等式

齐次线性方程组的基础解系

rank的两个重要结论

¥25伴随矩阵的rank

奇异矩阵:行列式=0的矩阵

31线性相关,线性无关,拓展与证明

n个m维向量在n<=m时可能线性相关也可能线性无关,线性无关时可以构成某个m维空间的一组基。m不小于n时,秩小于n则线性相关。

n个m维向量在n>m时可一定线性相关。低维向量一定无法构成高维度空间的一组基。

32极大线性无关组

33向量组的等价

34线性空间基变换

待研究的内容:

1线性无关向量的正交化

2矩阵的特征值和特征向量

3相似矩阵和相似对角化

4二次型及标准二次型

¥35单位正交基向量

两个向量的数量积等于0,则称两者正交或者垂直

研究它的原因:正交基向量,单位正交基向量有非常良好的性质

36斯密特正交化

37特征值和特征向量

概念篇

计算篇

性质篇

引用篇

39特征值和特征向量的性质

40特征值和特征向量的计算例题

求特征值和特征向量的步骤

特征值和特征向量的关系

特征值和特征向量的性质

秩1方阵的特征值

幂等矩阵

Hamilton-Cayley定理

【补充】linear algebra and its applicationsCH4 vector spaces

4.1vector spaces and subspaces

4.2null spaces,column spaces, and linear transformation

4.3linear independent set:bases

4.4coordinate systems

4.5the dimension of a vector space

4.6rank

4.7change of basis

4.8applications to different equations

4.9applications to markov chains

41相似矩阵

相似矩阵的性质

42矩阵相似对角化

43实对称矩阵

实对称矩阵的定义

共轭:实部不变,虚部变负

复数矩阵运算性质

既然只需要线性无关的特征向量构成的矩阵就可以实现相似对角化,那为什么还要将他们正交化,构成新矩阵呢?

44二次型的基本概念

二次型定义

二次函数的一般形式->坐标平移:齐次二次函数

要得到实对称矩阵:折半拆分

45化二次型为标准型&合同对角化

为什么要把二次型化为标准型,它和相似对角化有什么联系?

合同变换的定义:

相似对角化的意义在于:将线性变换通过基变换变成简单的伸缩变换

那么,将二次型经过合同变换转化为标准型有什么意义呢?

合同变换的意义

正交矩阵的性质

正交矩阵的列向量都是单位向量,且两两相互正交

实对称矩阵总可以相似对角化,因此任意一个二次型也可以使用相似对角化的方法化为标准型:将歪斜的曲线和曲面转化为正的

46二次型和圆锥曲线

二次型和合同变换

将二次型对应的实对称矩阵进行合同-相似对角化,就可以化为对角阵,从而化为单位正交基向量下的标准方程!

example

总结:

二次型特征值的正负性影响二次型可以表示的曲面

47正定二次型

正定二次型是什么?如何判断二次型是否是正定二次型?

48多元函数求极值,Hessian矩阵

49展望和总结

  • 4
    点赞
  • 3
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值