物理实验引发的思考:总体标准偏差和样本标准偏差的区别是什么?标准偏差和标准误的区别是什么?

一、总体标准偏差和样本标准偏差

假设我们测量了变量 x x x,测得的结果是 x 1 , x 2 , ⋯   , x n x_1,x_2,\cdots,x_n x1,x2,,xn。令 x ˉ \bar x xˉ是它们的算术平均值, μ \mu μ x x x的真实值。

我们使用标准(偏)差(Standard Deviation)来度量数据分布的分散程度。标准差越大,数据分布越离散,反之越集中。

我们在小学/初中学过标准差的计算公式 σ = ∑ i = 1 N ( x i − μ ) 2 N \sigma=\sqrt{\frac{\sum_{i=1}^{N}(x_i-\mu)^2}{N}} σ=Ni=1N(xiμ)2 其中 μ \mu μ是总体的平均值。但是物理实验中采用的是 S = ∑ i = 1 n ( x i − x ˉ ) 2 n − 1 S=\sqrt{\frac{\sum_{i=1}^{n}(x_i-\bar x)^2}{n-1}} S=n1i=1n(xixˉ)2 其中 x ˉ \bar x xˉ是样本的平均值。那为什么分母变成 n − 1 n-1 n1了呢?包括我在内的很多人都不理解。

实际上, σ \sigma σ叫做总体标准偏差(Population Standard Deviation),而 S S S叫做样本标准偏差(Sample Standard Deviation),是两种不同的标准偏差。它们的区别何在?总体标准偏差就是你已经知道了所有的数据,比如班级的成绩,然后你要计算它的离散程度。这在物理测量当中是不可能出现的,因为你可以测量无限次。样本标准偏差就是你要用一些数据(样本)来估计整体情况,相当于以偏概全。物理实验中就是这样一种情况,你测得一组数据,然后用这组数据近似表示真实值。在这种情形下,如果我们测得一组数据 x 1 , x 2 , ⋯   , x n x_1,x_2,\cdots,x_n x1,x2,,xn,用总体标准偏差 σ \sigma σ来表征离散程度的话,就出现问题了:总体平均值,也就是真实值 μ \mu μ,我们是不知道的。那我们用 x ˉ \bar x xˉ代替 μ \mu μ,就会导致:我们计算的是 x 1 , x 2 , ⋯   , x n x_1,x_2,\cdots,x_n x1,x2,,xn围绕样本的平均值 x ˉ \bar x xˉ的离散程度,而不是围绕真实值 μ \mu μ的离散程度。对于一组数 x 1 , x 2 , ⋯   , x n x_1,x_2,\cdots,x_n x1,x2,,xn和一个变量 t t t,令 f ( t ) = ∑ i = 1 n ( x i − t ) 2 f(t)=\sum\limits_{i=1}^n(x_i-t)^2 f(t)=i=1n(xit)2,这是一个开口向上的二次函数,在 t = − b 2 a = ∑ i = 1 n 2 x i 2 n = ∑ i = 1 n x i n = x ˉ t=-\frac{b}{2a}=\frac{\sum\limits_{i=1}^n2x_i}{2n}=\frac{\sum\limits_{i=1}^nx_i}{n}=\bar x t=2ab=2ni=1n2xi=ni=1nxi=xˉ的时候取得最小值。也就是说, ∑ i = 1 n ( x i − x ˉ ) 2 ≤ ∑ i = 1 n ( x i − μ ) 2 \sum\limits_{i=1}^n(x_i-\bar x)^2\le\sum\limits_{i=1}^n(x_i-\mu)^2 i=1n(xixˉ)2i=1n(xiμ)2。这就意味着,我们低估了数据的离散程度。我们需要将分母改为 n − 1 n-1 n1,来稍稍增大偏差的值。

那为什么是 n − 1 n-1 n1呢?纯统计学的严格证明颇为复杂,但我们可以用一种别样的思考方式。现在我们获得的样本有 n n n个测量结果,就是有 n n n条独立的信息。我们已经知道 x ˉ \bar x xˉ,如果再知道 x 1 − x ˉ , x 2 − x ˉ , ⋯   , x n − 1 − x ˉ x_1-\bar x,x_2-\bar x,\cdots,x_{n-1}-\bar x x1xˉ,x2xˉ,,xn1xˉ,那 x n − x ˉ x_n-\bar x xnxˉ自然就知道了。现在我们把这些偏差的平方加起来,应该只有 n − 1 n-1 n1条独立的信息,所有除以 n − 1 n-1 n1才说得通。专业的名词叫做有 n − 1 n-1 n1个“自由度”。

其实到这里你也许还是没有理解。是的,我也没有理解。在系统学习统计学之前是不可能理解的。但是很多人对采用 n − 1 n-1 n1作为分母的说法是“约定俗成的”,即用 n − 1 n-1 n1更符合统计规律。所以我们也不用在乎那么多了,记住在物理实验的时候用 n − 1 n-1 n1作为分母来算标准偏差就好了。

最后,我想说的是,当 n → ∞ n\to\infty n的时候,即测量无限次,那 x ˉ \bar x xˉ就是 μ \mu μ σ \sigma σ S S S的比值就会趋近于 1 1 1,这时总体标准偏差和样本标准偏差就是一回事了。


二、标准偏差和标准误

还是讨论物理实验中的问题。我们刚才讲了标准偏差(Standard Deviation),它的公式是 S = ∑ i = 1 n ( x i − x ˉ ) 2 n − 1 S=\sqrt{\frac{\sum_{i=1}^{n}(x_i-\bar x)^2}{n-1}} S=n1i=1n(xixˉ)2 关于分母为什么是 n − 1 n-1 n1就已经够让我们头疼了,现在又冒出来一个标准误(Standard Error of Mean),这玩意又是什么呢?

标准误的含义用来估计样本平均值和真实值有多少差异的,用 σ x ˉ \sigma_{\bar x} σxˉ表示。例如, x ˉ = 0.370 \bar x=0.370 xˉ=0.370 σ x ˉ = 0.002 \sigma_{\bar x}=0.002 σxˉ=0.002,那么测量结果就写成 0.370 ± 0.002 0.370\pm0.002 0.370±0.002

对于标准偏差和标准误的区别,知乎上有一个我感觉很好的解释:在这里插入图片描述
举个栗子,现在我们测量了 200 200 200次,分为 20 20 20组,每组 10 10 10个数取一个平均值,那这 20 20 20个平均值的标准偏差就是这 200 200 200个数据的标准误。

标准误的计算公式是 σ x ˉ = S n = ∑ i = 1 n ( x i − x ˉ ) 2 n ( n − 1 ) \sigma_{\bar x}=\frac{S}{\sqrt n}=\sqrt{\frac{\sum_{i=1}^{n}(x_i-\bar x)^2}{n(n-1)}} σxˉ=n S=n(n1)i=1n(xixˉ)2
为什么要除以 n \sqrt n n 呢?我们考虑 n x ˉ = x 1 , x 2 ⋯   , x n n\bar x=x_1,x_2\cdots,x_n nxˉ=x1,x2,xn的标准偏差,而 x 1 , x 2 ⋯   , x n x_1,x_2\cdots,x_n x1,x2,xn是相互独立的,所以它们的标准偏差都等于 S S S,其中 S S S x x x的标准偏差。那么 σ n x ˉ 2 = n S 2 \sigma_{n\bar x}^2=nS^2 σnxˉ2=nS2,即 n 2 σ x ˉ 2 = n S 2 n^2\sigma_{\bar x}^2=nS^2 n2σxˉ2=nS2 σ x ˉ = S n \sigma_{\bar x}=\frac{S}{\sqrt n} σxˉ=n S


本文到这里就结束了,还是留下了太多没有解决的问题,以后慢慢补上吧,总之物理实验直接套公式就行了,不用操那么多心~


2022/11/28更新:现在学了概率论与数理统计,有了新的理解,请看这里–>【概率论】关于为什么样本标准偏差分母是n-1的进一步理解

  • 16
    点赞
  • 20
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
### 回答1: 在统计学中,当我们从整体或总体中选择一个样本来进行研究时,通常需要区分使用总体参数还是样本统计量。 如果你测量了一个样本的血压,然后计算了这个样本标准偏差,那么得到的是样本标准偏差。如果你想要推断整个总体的血压分布,则需要使用总体标准偏差。 因此,如果你对整个总体的血压分布没有先验知识,只能通过测量一组样本来进行推断,则使用样本标准偏差来描述样本中血压的变化程度。但如果你知道总体血压分布的性质,则可以使用总体标准偏差来描述总体中血压的变化程度。 ### 回答2: 24小时中血压统计中的标准偏差样本标准偏差标准偏差是用来衡量数据集中的变异程度的统计量,表示观测值与平均值之间的离散程度。在统计学中,我们常用样本标准偏差来估计总体标准偏差。 在这个问题中,我们要统计24小时内的血压数据。由于我们无法测量所有人的血压,因此我们选择一个小的不同样本来进行测量,并从中得到样本平均值和样本标准偏差样本标准偏差是根据样本数据计算得出的,用来估计总体标准偏差总体标准偏差是指整个人群或总体中所有个体的血压观测值与总体均值之间的离散程度。由于总体标准偏差无法直接计算,所以我们使用样本标准偏差来估计总体标准偏差。 因此,在24小时中血压统计中,所使用的标准偏差样本标准偏差,用来估计总体的血压变异程度。 ### 回答3: 在24小时中血压统计中,标准偏差是指血压数据的离散程度或变异性的度量。而根据给出的信息,无法确定是使用样本标准偏差还是总体标准偏差来计算。 如果统计分析中使用的是全部24小时血压数据,即包括所有人的数据,那么应该使用总体标准偏差总体标准偏差是对总体(在此情况下为所有人的血压数据)的离散程度进行估计。 然而,如果此处的统计分析是基于取样方法,只选择了部分人群进行调查或者采样,那么应该使用样本标准偏差样本标准偏差是对样本数据的离散程度进行估计,用于推断总体的离散程度。 因此,为了准确回答问题,需要了解具体的数据来源以及分析方法。无论是使用样本标准偏差还是总体标准偏差,都可以帮助我们了解血压数据的变异性,评估人群的健康状况以及制定合适的医疗方案。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值