总体方差和样本方差

我们知道,统计学上方差的计算公式如下:
σ 2 = ∑ i = 1 n ( x i − μ ) n \sigma^2=\frac{\sum_{i=1}^{n}(x_i-\mu)}{n} σ2=ni=1n(xiμ)
这是统计学中方差的定义,已知条件有总体的均值 μ \mu μ,以及总体个数 n n n,公式的另一种写法为:
σ 2 = E [ ( x − μ ) 2 ] = ∑ ( x − μ ) 2 p ( x ) \sigma^2=E[(x-\mu)^2]=\sum{(x-\mu)^2}p(x) σ2=E[(xμ)2]=(xμ)2p(x)
其中 p ( x ) p(x) p(x) x x x出现的概率,所以这个公式只对于离散变量有效


那么,如果总体量很大,不能做到全部采样,那么就需要用样本来估计总体,假设从总体为 N N N的总数中抽取 n n n个样本,其中 ( N > > n ) (N>>n) (N>>n),采样值为 x 1 , x 2 , . . . , x n x_1,x_2,...,x_n x1,x2,...,xn
样本均值为:
x ˉ = ∑ i = 1 n x i n \bar{x}=\frac{\sum_{i=1}^{n}{x_i}}{n} xˉ=ni=1nxi
样本的方差为:
S 2 = ∑ i = 1 n ( x i − x ˉ ) 2 n S^2=\frac{\sum_{i=1}^{n}(x_i-\bar{x})^2}{n} S2=ni=1n(xixˉ)2
但是样本的方差和总体的方差是有差别的,计算样本方差的期望值,来估计样本方差和实际方差 σ 2 \sigma^2 σ2之间差了多少:
E [ S 2 ] = E [ ∑ i = 1 n

评论 9
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值