肿瘤免疫治疗多组学综合分析数据库CAMOIP v1.1上线啦!

大家好,非常感谢大家对CAMOIP的兴趣和支持。经过半年多的努力,我们的CAMOIP工具迎来了1.1版本,这个版本有更多的功能和更好的用户体验感。

CAMOIP提供用户对免疫治疗预后的生物标志物(如基因突变或基因表达:预后分析)的筛选和后续分子机制的探索 (如①表达分析,②基因突变全景分析,③免疫原性分析-TMB,免疫原性分析-NAL,免疫原性分析-MANTIS score,④免疫浸润分析-免疫细胞,免疫浸润分析-免疫基因,免疫浸润分析-免疫分数,⑤通路富集分析-GSEA,通路富集分析-ssGSEA)。此外,用户还可以通过使用CAMOIP对来自TCGA数据库中的所有癌症类型患者进行上述类似的分析。

目前CAMOIP也被Briefings in Bioinformatics接受了。感谢这段时间通过微信群和邮件等方式给我们提出宝贵意见的各位老师。欢迎大家体验!

CAMOIP网址:http://www.camoip.net/

CAMOIP备用网址:http://220.189.241.246:13838/

大家有什么意见和建议也请告知我们(zhangjian@i.smu.edu.cn或者luopeng@smu.edu.cn)。

此外,我们后续也会检索和更新CAMOIP中的免疫治疗队列,如果大家有免疫治疗队列,也可以以邮件的形式发送发给我们,我们则会定期更新CAMOIP中数据的。

Survival Analysis

1、Kaplan-Meier

5992a8346f4b9b87fdc7a5f68d1e12e7.png

☑用户可以探索某基因突变状态(MT, WT)对感兴趣的癌症患者接受免疫治疗(ICI-cohort)后临床预后(如OS, PFS)对影响。

☑用户可以探索某基因表达状态(High-Expression, Low-Expression)对感兴趣的癌症患者接受免疫治疗(ICI-cohort)后临床预后(如OS, PFS)对影响。

☑用户可以探索某基因突变状态(MT, WT)对感兴趣的癌症患者(TCGA-cohort)临床预后(如OS, PFS)对影响。

☑用户可以探索某基因表达状态(High-Expression, Low-Expression)对感兴趣的癌症患者(TCGA-cohort)临床预后(如OS, PFS)对影响。

2、Cox-Regression

2fc03fbab6df812e577ef238779d1533.png

☑用户可以探索某基因突变状态(MT, WT),临床特征对感兴趣的癌症患者接受免疫治疗(ICI-cohort)后临床预后(如OS, PFS)对影响。

☑用户可以探索某基因表达状态(High-Expression, Low-Expression),临床特征对感兴趣的癌症患者接受免疫治疗(ICI-cohort)后临床预后(如OS, PFS)对影响。

☑用户可以探索某基因突变状态(MT, WT),临床特征对感兴趣的癌症患者(TCGA-cohort)临床预后(如OS, PFS)对影响。

☑用户可以探索某基因表达状态(High-Expression, Low-Expression),临床特征对感兴趣的癌症患者(TCGA-cohort)临床预后(如OS, PFS)对影响。

Expression Analysis

1. Boxplot

c93f46dc5201e6d8aa64c1e65b319d45.png

☑在ICI-cohort或TCGA-cohort中,用户可以比较感兴趣的1~10个基因的表达量水平在某基因突变状态(MT, WT)的差异。

☑在ICI-cohort或TCGA-cohort中,用户可以比较感兴趣的1~10个基因的表达量水平在基因表达状态(High-Expression, Low-Expression)的差异。

2. Table

f72e31339c6b97b341f9f36847932561.png

☑在ICI-cohort或TCGA-cohort中,用户可以比较某基因突变状态(MT, WT)下所有基因表达量的差异。

☑在ICI-cohort或TCGA-cohort中,用户可以比较某基因表达状态(High-Expression, Low-Expression)下所有基因表达量的差异。

Mutational Landscape Analysis

80fca36e57c64edf3186400b885f6a4c.png

☑在ICI-cohort或TCGA-cohort中,用户可以比较某基因突变状态(MT, WT)下特定数量(10~30个)TOP mutated的基因或驱动基因的突变频率之间的差异。

☑在ICI-cohort或TCGA-cohort中,用户可以比较某基因表达状态(High-Expression, Low-Expression)下特定数量(10~30个)TOP mutated的基因或驱动基因的突变频率之间的差异。

Immunogenicity Analysis

1. Tumor  Mutation Burden (TMB)

74d4737d1706cefebb2522379d36c041.png

☑在ICI-cohort或TCGA-cohort中,用户可以比较某基因突变状态(MT, WT)下TMB的差异。

☑在ICI-cohort或TCGA-cohort中,用户可以比较某基因表达状态(High-Expression, Low-Expression)下TMB的差异。

2、Neoantigen Loads (NAL)

9aa59ac5936c573bd61c1b85f426e14a.png

☑在ICI-cohort或TCGA-cohort中,用户可以比较某基因突变状态(MT, WT)下NAL的差异。

☑在ICI-cohort或TCGA-cohort中,用户可以比较某基因表达状态(High-Expression, Low-Expression)下NAL的差异。

3、MANTIS Score

bcf10ba58f4b0a0343c10e8acef0e71a.png

☑在TCGA-cohort中,用户可以比较某基因突变状态(MT, WT)下MANTIS Score的差异。

☑在TCGA-cohort中,用户可以比较某基因表达状态(High-Expression, Low-Expression)下MANTIS Score的差异。

Immune Infiltration Analysis

1、Immune Cells

d652dc84efb0b29763ab62bfdfcbc3f2.png

☑在ICI-cohort或TCGA-cohort中,用户可以比较某基因突变状态(MT, WT)下免疫细胞分数(由不同免疫细胞评估算法评估,包括①CIBERSORT;②EPIC;③IPS;④MCPcounter;⑤quanTIseq)的差异。

☑在ICI-cohort或TCGA-cohort中,用户可以比较某基因表达状态(High-Expression, Low-Expression)下免疫细胞分数(由不同免疫细胞评估算法评估,包括①CIBERSORT;②EPIC;③IPS;④MCPcounter;⑤quanTIseq)的差异。


2、Immune Genes

367337181796784232b24b8c503a9aed.png

☑在ICI-cohort或TCGA-cohort中,用户可以比较某基因突变状态(MT, WT)下免疫相关基因的表达量(如①免疫检查点相关基因);②抗原处理和呈递相关基因;③B细胞相关基因;④CD4+调节T细胞相关基因;⑤CD8+ T cells相关基因;⑥细胞毒性相关基因;⑦免疫抑制相关基因;⑧免疫刺激相关基因;⑨Macrophages相关基因;⑩Type I/II IFN Response相关基因)的差异。

☑在ICI-cohort或TCGA-cohort中,用户可以比较某基因表达状态(High-Expression, Low-Expression)下免疫相关基因的表达量(如①免疫检查点相关基因);②抗原处理和呈递相关基因;③B细胞相关基因;④CD4+调节T细胞相关基因;⑤CD8+ T cells相关基因;⑥细胞毒性相关基因;⑦免疫抑制相关基因;⑧免疫刺激相关基因;⑨Macrophages相关基因;⑩Type I/II IFN Response相关基因)的差异。

3、Immune Scores

89325af91524dea7cbebe96e13119956.png

☑在ICI-cohort或TCGA-cohort中,用户可以比较某基因突变状态(MT, WT)下免疫相关分数的差异。

☑在ICI-cohort或TCGA-cohort中,用户可以比较某基因表达状态(High-Expression, Low-Expression)下免疫相关分数的差异。

Pathway Enrichment Analysis

1、Gene Set Enrichment Analysis (GSEA)

d40345ee51c98fbdea166162b9def0c5.png

☑在ICI-cohort或TCGA-cohort中:

[在Step1]用户根据某基因突变状态(MT, WT)和表达数据来进行GSEA,并比较不同基因突变状态(MT, WT)在GO-BP,GO-CC,GO-MF,KEGG和REACTOME基因集通路上的富集活性差异。

[在Step2]用户根据选择感兴趣的可视化形式 (如①GSEA-Plot;②Dot-Plot;③Ridge-Plot;④Emap-Plot)来对Step1中的GSEA结果进行对应的可视化。

☑在ICI-cohort或TCGA-cohort中:

[在Step1]用户根据某基因表达状态(High-Expression, Low-Expression)和表达数据来进行GSEA,并比较不同基因突变状态(MT, WT)在GO-BP,GO-CC,GO-MF,KEGG和REACTOME基因集通路上的富集活性差异。

[在Step2]用户根据选择感兴趣的可视化形式 (如①GSEA-Plot;②Dot-Plot;③Ridge-Plot;④Emap-Plot)来对Step1中的GSEA结果进行对应的可视化。

2、Gene Set Enrichment Analysis (GSEA)

e9069d0cbb31e23de3a683f08f0c4e8b.png

☑在ICI-cohort或TCGA-cohort中,用户可以比较某基因突变状态(MT, WT)下通路分数(由ssGSEA算法评估得到)的差异。

☑在ICI-cohort或TCGA-cohort中,用户可以比较某基因表达状态(High-Expression, Low-Expression)下通路分数(由ssGSEA算法评估得到)的差异。

DATA

f2bc59a59ed35c49c4a8a4763a13eed6.png

在DATA界面,包括了CAMOIP 1.1中所用到的ICI-cohort和TCGA-cohort的参考文献。用户可以通过点击Dataset列中的超链接,进一步可以跳转到对应数据集的界面。

Docs

1. About

在这个界面中,主要包括了一些关于CAMOIP的介绍。

2. FAQ

在这个界面中,主要包括了一些关于CAMOIP的常见问题和对应的回复。

How to Cite CAMOIP

Journal: Briefings in Bioinformatics

DOI: 10.1093/bib/bbac129 

Title: CAMOIP: A Web Server for Comprehensive Analysis on Multi-Omics of Immunotherapy in Pan-cancer

点击阅读原文,即可转达CAMOIP网页工具

往期精品(点击图片直达文字对应教程)

e7bbe956445b73c2d59db9e8f7aa5469.jpeg

ff06017acce6854c5d43bcf99986ae54.jpeg

ca1e89567db491029bb51f42b6dc32c3.jpeg

eefdb2f27b14d49f6c65bd38a5c46e0c.jpeg

e11ecf7fdad641228510c037172c3898.jpeg

10c0b246749073224c85aedf69323ba7.jpeg

56dff1a480dcf093cc3575aa2d799823.jpeg

a172be77f4e82b8d6040851681373ddc.jpeg

928864aa12ebb2bc25e25d86c22fb3bd.jpeg

cad6e36927850498a3dac8748ab18324.jpeg

543b2a2352cedd1c35fa9e0588444a8a.jpeg

56e122ad2eef68b29f7fde702087c420.jpeg

26e669dfac0401d90bc34ac20237b518.png

775964616e6bc434ad7acb3a69b33d1e.png

70759c9f68b5c18132906df72bd314cd.png

a2b25b897d164d93fb9348ef7558db73.png

2d139576ddee8a67e609fafad7a35e7d.jpeg

6d9200c7ac4071252dbaa5cc7bce9858.jpeg

0300bfe545793cb6e21298de86b8527f.jpeg

98249ac451624cef156527b11c507a62.jpeg

35bf2dd7b671a986ea34a3c1b2a4a834.png

fef6881e91d858c525d4602be0b19d54.png

5d19b095d6b5bf1b093e0d37900f6397.jpeg

f51403961d153c4ef2474086887f7668.png

bad9a104ea41ae621f95a80f2a4ac24f.png

621bab14bcc79a5bfc58b5188633a4df.jpeg

bfc526af4f77fc6e71b3498726f36267.png

0dfc1ac57e07120eadc3f011360b5738.png

机器学习

后台回复“生信宝典福利第一波”或点击阅读原文获取教程合集

8204f7324b315a51be5a5006e5b83f06.jpeg

a04a23699fed6571b74d4829ede4ef58.jpeg

32ce9dcc22b14b6532f10a4601c29ce7.png

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值