气象类Python编程实战案例项目汇总

本文档详述了使用Python进行气象数据分析的实践,涵盖Python基础、Numpy、Pandas、Xarray和Dask库的教程,以及Matplotlib、Cartopy、Metpy和Basemap的气象可视化方法。同时,介绍了气象数据的读取、处理、计算和机器学习应用,提供了一系列项目案例,包括机器学习在气象预报中的应用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

目录

1.气象数据科学语言教程

(1)Python 基础

(2)Numpy教程

(3)Pandas教程

(4)Xarray实例

(5)Dask教程

2.气象数据读取/数据处理/数据分析/数值计算

3.气象可视化

(1)Matplotlib绘图教程

(2)Cartopy绘图教程

(3)Metpy绘图教程

(4)Basemap库教程

(5)气象可视化案例

4.机器学习系列教程

(1)周志华《机器学习》西瓜书笔记

(2)吴恩达《机器学习》

5.气象应用场景优秀项目


1.气象数据科学语言教程

(1)Python 基础

说明:Python 在气象、人工智能、机器学习领域受到火热追捧,很大程度上在于它拥有非常庞大的第三方库,以及强大的通用编程性能。因此,想要逐渐掌握 Python 数据分析,可以通过学习和了解如何利用 Python 调用 Python 的各种第三方库和工具包,感受运用 Python 进行数据分析的便利性。

科赛 x 机器之心 | 从零上手Python关键代码

Python基础 | Python100例

Python入门教程

(2)Numpy教程

说明:Numpy 是 Python 数值计算的基石,它提供多种数据结构、算法以及大部分设计 Python 数值计算所需的接口。Numpy 能够赋予 Python 快速处理数组的能力,除此之外,Numpy 的另一个主要用途是在算法和库之间作为数据传递的数据容器。

Numpy快速上手指南——基础篇

Numpy快速上手指南——进阶篇

Numpy入门教程

Numpy实战全集

这100道练习,带你玩转Numpy

(3)Pandas教程

说明:Pandas 为数据分析提供了高级数据结构和函数,使得利用结构化、表格化数据的工作快速、简单、表现力。做数据分析主要使用的 Pandas 对象是 DataFrame(用于实现表格化、面向列、使用行列标签的数据结构)和 Series(一种一维标签数组对象)。

Pandas入门教程(1)

Pandas入门教程(2)

Pandas入门教程(3)

【Pandas教程 】像写SQL一样用Pandas

高效分析:如何用pandas快速处理数据

Pandas基础命令速查表

50道练习带你玩转Pandas

这十套练习,教你如何使用Pandas做数据分析

Pandas进阶修炼300题

(4)Xarray实例

说明:由于气象数据大多为多维数据,Xarray 提供了一种高效读取和处理多维数据的方式方法,它特别适合处理 netCDF 文件,在类似于 NumPy 的原始数组上以尺寸、坐标和属性的形式引入标签,从而能提供给研究人员更直观,更简洁和更少出错的体验。该软件包包括一个庞大且不断增长的功能库,使用这些数据结构可以实现对气象数据的高级分析和可视化。

xarray实例大全(一)-气象数据示例

xarray实例大全(二)-月平均时间序列计算季节性平均值

xarray实例大全(三)-比较加权与非加权平均温度

xarray实例大全(四)-多维坐标的使用

xarray实例大全(五)-可视化库

xarray实例大全(六)-ROMS海洋模型示例

xarray实例大全(七)-GRIB数据示例

xarray实例大全(八)-使用apply_ufunc

xarray高阶|利用dask并行读取数据

(5)Dask教程

Dask官方教程_第0章_概述

Dask官方教程_第1章_dask.delayed

Dask官方教程_第1x章_惰性执行

Dask官方教程_第2章_bag

Dask官方教程_第3章_数组

Dask官方教程_第4章_数据帧

Dask官方教程_第5章_分布式

Dask官方教程_第6章_分布式,进阶

Dask官方教程_第7章_数据帧的存储

Dask官方教程_第8章_机器学习

Dask官方教程_作业

2.气象数据读取/数据处理/数据分析/数值计算

Workshop第一期:初探气象数据Part1

Workshop第一期:初探气象数据Part2

Python读取气象数据nc格式文件的入门级操作

Python处理HDF格式数据示例

利用Python的requests和json包获取台风数据

基于Python的Grads文件解析

CALIPSO卫星数据处理

气象数据文件读取

复杂算法实现(以波通量和平流计算为例)

利用Metpy计算气象诊断量

三类极端事件指数的实现

数据结构-合成分析-显著性检验

CDO, Python+CDO和python-cdo

相关分析和回归分析

评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值