Table of Contents
第九章与第八章 有向图和拉姆齐问题(独立集、覆盖、临界图、拉姆齐数)——基础概念
第九章与第八章 有向图和拉姆齐问题(独立集、覆盖、临界图、拉姆齐数)——普通题目
电子科技大学2019年图论期末考试答案总结(不一定正确,仅供参考)
电子科技大学2018年图论期末考试答案总结(不一定正确,仅供参考)
电子科技大学2017年图论期末考试答案总结(不一定正确,仅供参考)
电子科技大学2016年图论期末考试答案总结(不一定正确,仅供参考)
电子科技大学2015年图论期末考试答案总结(不一定正确,仅供参考)
电子科技大学2014年图论期末考试答案总结(不一定正确,仅供参考)
电子科技大学2013年图论期末考试答案总结(不一定正确,仅供参考)
电子科技大学2012年图论期末考试答案总结(不一定正确,仅供参考)
电子科技大学2011年图论期末考试答案总结(不一定正确,仅供参考)
电子科技大学2010年图论期末考试答案总结(不一定正确,仅供参考)
电子科技大学2009年图论期末考试答案总结(不一定正确,仅供参考)
电子科技大学2008年图论期末考试答案总结(不一定正确,仅供参考)
电子科技大学2007年图论期末考试答案总结(不一定正确,仅供参考)
引言
图论全书概览
第一章:图的基本概念
第二章:树
第三章:图的连通度
第四章:欧拉图和哈密尔顿图
第五章:匹配与因子分解
第六章:平面图
第七章:图的着色
第八第九章:独立集、有向图
其中前7章是考试重点。
前四章可以看作一个部分,后面的5 6 7章可以看作一个部分。
其中,第一部分的主要逻辑是基本概念和三种特殊的图:树、欧拉图、哈密尔顿图。为了说明欧拉图和哈密尔顿图的一些定理而不得不引入第三章图的连通度。
第二部分则偏重于图在现实中的具体应用,包括匹配、平面图和着色问题。
第一章 图的基本概念——概念部分
1.1 图和简单图
名词 | 解释 | 往年出现的频率 |
有限图 | 顶点集和边集都有限的图 |
|
平凡图 | 只有一个点而没有边 |
|
非平凡图 | 除了平凡图以外的所有图 |
|
空图 | 边集为空的图 |
|
顶点/顶点数 | V(Vertex), n(G),|V| |
|
边/边数 | E(Edge), m(G),|E| |
|
偶图 | 顶点分成二分类(X,Y),使得每条边都是一个顶点在X,另一个顶点在Y |
|
完全偶图Km,n | 具有二分类(X,Y)的简单偶图,其中X的每个顶点与Y的每个顶点相连。若|X|=m,|Y|=n,则记作Km,n |
|
自补 | 图G与图G的补图同构 |
|
度 | 略,注意每个环计算两次;最小度δ(G);最大度Δ(G); |
|
奇点/偶点 | 奇数度的顶点/偶数度的顶点 |
|
k正则图 | 所有顶点的度数均为k |
|
可图的 | 某个序列是一个简单图的度序列,则称该序列是可图的 (所有di之和为偶数的序列必然是图的度序列,但不一定是简单图的度序列;度序列定义略) |
|
频序列 | 设n阶图G的各点的度取s个不同的非负整数 d1,d2,…, ds。又设度为di的点有bi个(i= 1,2,…,s),则 bi之和为n,故非整数组(b1,b2,…, bs)是n的一个划分,称为G的频序列。 |
|
1.2 子图与图的运算
子图 | 对图H和图G,如果H的边集属于G的边集,H的点集属于G的点集,且H中边的重数不超过G中对应边的重数,则称H为G的子图.
若H≠G,则H为G的真子图
|
|
点导出子图(导出子图) | G=[V,E],若V‘是V的子集,则以V’为点集,以两端均在V‘中的边为边集,得到的图即为点导出子图 |
|
边导出子图 | G=[V,E],若E‘是E的子集,则以E’为点集,以E'中边的所有端点为顶点集,组成的图即为图G的边导出子图 |
|
生成子图 | 如果图G的一个子图包含G的所有顶点,称该子图为G的一个生成子图 (简单图G=(n,m)的所有生成子图个数为2^m) | 1 |
删点运算 删边运算 | 删点也删边;删边不删点 |
|
并运算 | 点集:两个点集的并; 边集:两个边集的并。G1UG2 |
|
G1+G2 | 两个不相交图的并,称为直接并,记为G1+G2 |
|
交运算 | 点集:两个点集的交;边集: 两个边集的交。G1∩G2 |
|
差运算 | G1-G2: 从G1中删去G2中的边得到的新图。 |
|
对称差运算(环和运算) | 设G1,G2是两个图,G1与G2的对称差定义为: G1ΔG2 = (G1UG2)-(G1∩G2) |
|
联运算 | 设G1,G2是两个不相交的图,作G1+G2,并且将G1中每个顶点和G2中的每个顶点连接,这样得到的新图称为G1与G2的联图。 G1VG2 |
|
积图 | 点集: u=(u1,u2),其中u1属于V1.u2属于V2; 边集:当(u1=v1和u2adjv2)或(u2=v2和u1adjv1)时,把u与v相连。 记为G1×G2 |
|
合成图 | 点集:u=(u1,u2),其中u1属于V1.u2属于V2; 边集:当(u1adjv1)或(u1=v1和u2adjv2)时,把u与v相连; 记为G=G1[G2] |
|
| ||
n方体 | 递归构造: 1方体: Q1=K2; n方体: Qn = K2 × Q(n-1) |
|
图的联合 | 把G1的一个顶点和G2的一个顶点粘合在一起后得到的新图称为G1与G2的联合。 G = G1 · G2 |
|
1.3 图与路的连通性
名词 | 解释 | 往年出现的频率 |
途径/通道/通路 | 指一个有限非空序列w= v0 e1 v1 e2 v2…ek vk,它的项交替地为顶点和边 |
|
途径的长度 | 途径中的边数 |
|
迹 | 边不重复的途径 |
|
路 | 顶点不重复的途径 |
|
闭途径/闭迹/闭路 | 起点与重点重合的途径、迹、路 |
|
两顶点的距离 | 两顶点最短路的长度d(u,v) |
|
ω(G) | 分支数。G的连通分支的个数。其中,连通分支是指图中的每一个极大连通部分。 |
|
d(G) | 图的直径。任意两点间距离的最大值;若不连通,则d(G)为+∞ |
|
强连通图 |
|
|
1.4 最短路及其算法
无
1.5 图的代数表示及其特征
邻接矩阵 |
同一图的不同形式的邻接矩阵是相似矩阵。 |
|
关联矩阵 |
其中aij是点vi和边ej关联的次数(0或1或2(环)) 1) 关联矩阵的元素为0,1或2; 2) 关联矩阵的每列和为2;每行的和为对应顶点度数; |
|
度弱 | 设G和H是两个n阶图,称G度弱于H,如果存在双射μ:V(G)→V(H),使得:
|
|
|
|
|
|
|
|
|
|
|
第一章 图的基本概念——题目部分(普通题目)
题目 | 思路 | 期末考试契合度 |
若n阶图G是自补的,证明n=0,1(mod4) | G与G补图边数相等且加起来是完全图 | ⭐⭐ |
正则图的阶数和度数不同时为奇数 | 任何图的奇点个数都为偶数->k正则图若k为奇数则阶数为偶数 | 课本P4 |
四个顶点非同构的所有简单图有几个? |
| ⭐⭐⭐ |
Δ与δ是简单图G的最大度与最小度,求证:δ<=2m/n<=Δ | 握手定理得2m+最大最小度定义放缩 | 杨春老师PPT |
如何判定一个序列是不是可图的(即是不是图序列)? | 非负整数组
是图序列的充要条件:
是图序列
| ⭐⭐⭐⭐⭐ |
对于简单图G,证明其n个点的度不能互不相同 | 鸽笼原理+按孤立点个数分情况讨论 | 课本 PPT |
n阶图G和它的补图有相同的频序列 | 由补图定义,G中度为i的点 与 G补图中度为(n-1-i)的点一一对应,故频序列相等 | ⭐⭐⭐⭐ |
在n阶连通图中: (1)至少有n-1条边; (2)如果边数大于n-1,则至少有一条闭迹; (3)如果恰有n-1条边,则至少有一个奇度点。 | (1)构造途径 (2)构造途径。若W是路,则长为n-1;但由于G的边数大于n-1,因此,存在vi与vj,它们相异,但邻接。 (3)反证法。 若不然,G中顶点度数至少为2,于是由握手定理:m>=n,于是m>n-1;矛盾 | PPT |
证明:若δ≥2,则G中必然含有圈。 | 证明:只就连通图证明即可! 设W=v1v2…..vk-1vk是G中的一条最长路。由于δ≥2,所以vk必然有相异于vk-1的邻接顶点。又W是G中最长路,所以,这样的邻接点必然是v1,v2,….,vk-2中之一。 设该点为vm,则vmvm+1….v kvm为G中圈。 | PPT |
证明:若图G不连通,则其补图连通 | 对任意两点u和v,分别讨论它们是否在同一分支中。 证明:对任意两点u v,如果u, v属于G的同一分支,设w是与u, v处于不同分支中的点,则在G的补图中,u与w, v与w分别邻接,于是,u与v在G的补图中是连通的。如果u与v在G的两个不同分支中,则在G的补图中必然邻接,因此,也连通。 所以,若G不连通,G的补图是连通的。 |
|
偶图的判定(*****) 一个图是偶图当且当它不包含奇圈 | 必要性:设G是具有二分类(X, Y)的偶图,并且 C = v0 v1… vk v0是G的一个圈。证明G是偶圈; 充分性: |
|
最短路算法 熟悉格式 |
| ⭐⭐ |
G连通的充分必要条件是:A(G)不能与如下矩阵相似
|
|
|
其中a ij(k)表示顶点vi到顶点vj的途径长度为k的途径条数。 |
| ⭐⭐⭐⭐⭐ |
完全l部图的边数 |
|
|
完全图的谱 |
|
|
第一章 图的基本概念——题目部分(易错题目)
题目 | 思路 | 易错原因 |
证明由两人或更多人组成的人群中,总有两人在该人群中恰好有相同的朋友数 | 转换为 简单图G的n个点的度不能互不相同 | 想不到怎么转换问题 |
Kn的谱spec(G) | 求特征值和代数重数 | 第一列和第二列容易写反!记住第一列是-1!小的优先 |
aij(k)表示的意义为 | 是通道!!途径 |
|
设m(n, H)表示n阶单图中不含子图H的最多边数,则:
| T2,n的含义:n阶完全2几乎等部图 |
|
| 问的是途径,因此A^2所有元素求和即可; 但如果问的是路,就要起点和终点不重合,所以要去掉对角线元素。 |
|
自环是圈吗? | 不是!圈是起点和终点重合的路! 自环:v1e1v1 |
|
第二章 树——概念部分
2.1 树的概念与性质
森林 | 就是无圈图(不含圈(自环也是圈)的图) |
|
树 | 连通的无圈图 |
|
2.2 树的中心与形心
图的顶点的离心率 |
|
|
图的半径 |
最小离心率? |
|
图的直径 | 最大离心率 |
|
图的中心点 | 离心率等于半径的点 |
|
图的中心 | 中心点的集合 |
|
树T在顶点u的分支 | 包含u作为一个叶点的极大子树,其分支数为顶点u的度数; |
|
树T的形心 | 树T在u点的分支中边的最大数目称为点u的权;树T中权值最小的点称为它的一个形心点。全体形心点的集合称为树T的形心。 |
|
2.3 生成树
生成树 | 图G的一个生成子图T如果是树,称它为G的一棵生成树; |
|
生成森林 | 图G的一个生成子图T如果是树,称它为G的一棵生成树;若T为森林,称它为G的一个生成森林。 |
|
树枝 | G中属于生成树的边称为树枝 |
|
弦 | G中非生成树的边称为弦。 |
|
τ(G) | G的生成树棵数 |
|
边e收缩 G·e | 图G的边e称为被收缩,是指删掉e后,把e的两个端点重合,如此得到的图记为G.e |
|
凯莱递推计数法 | 设e是G的一条边,则有: τ(G)=τ(G-e)+τ(G·e) 证明: 由于 G 的每一颗不包含 e 的生成树也是 G−e 的生成树,所以 τ(G−e) 就是 G 的不 包含 e 的生成树的个数,τ(G·e) 就是 G 的包含 e 的生成树的个数. |
|
主子阵 | n×m矩阵的一个阶数为min{n, m}的子方阵,称为它的一个主子阵;主子阵的行列式称为主子行列式。 |
|
基本关联矩阵 | 对G的关联矩阵划去任意节点所对应的行,得到的(n-1)×m的矩阵即为基本关联矩阵 |
|
关联矩阵计数法 | (1) 写出G的关联矩阵,进一步写出基本关联矩阵,记住参考点; (2) 找出基本关联矩阵的非奇异主子阵,对每个这样的主子阵,画出相应的生成树。 | 可绘制出所有的生成子树 |
图的Laplace矩阵 | C = D(G)-A(G) D(G)是图的度对角矩阵,即主对角元为对应顶点度数,其余元素为0。A(G)是图的邻接矩阵。 |
|
矩阵树定理计数 | 设G是顶点集合为V(G)={v1,v2,…,vn},的图,设A=(aij)是G的邻接矩阵,C=(cij)是n阶方阵,其中:
则G的生成树棵数为C的任意一个余子式的值。 |
|
2.4 最小生成树
克鲁斯卡尔算法 | 从G中的最小边开始,进行避圈式扩张。 只需要是无圈图即可,不需要连通 |
|
管梅谷算法 | 破圈法 从赋权图G的任意圈开始,去掉该圈中权值最大的一条边,称为破圈。不断破圈,直到G中没有圈为止,最后剩下的G的子图为G的最小生成树。 |
|
Prim算法 | 从点开始 对于连通赋权图G的任意一个顶点u,选择与点u关联的且权值最小的边作为最小生成树的第一条边e1; 在接下来的边e2,e3,…,en-1 ,在与一条已经选取的边只有一个公共端点的的所有边中,选取权值最小的边。 |
|
有向树 | 一棵树T,如果每条边都有一个方向,称这种树为有向树。对于T的顶点v来说,以点v为终点的边数称为点v的入度,以点v为起点的边数称为点v的出度。入度与出度之和称为点v的度。 |
|
根树 树根 树叶 | 一棵非平凡的有向树T,如果恰有一个顶点的入度为0,而其余所有顶点的入度为1,这样的的有向树称为根树。其中入度为0的点称为树根,出度为0的点称为树叶,入度为1,出度大于1的点称为内点。又将内点和树根统称为分支点。 |
|
层数 | 对于根树T,顶点v到树根的距离称为点v的层数; |
|
树高 | 所有顶点中的层数的最大者称为根树T的树高。 |
|
完全m元树 | 对于根树T,若每个分支点至多m个儿子,称该根树为m元根树;若每个分支点恰有m个儿子,称它为完全m元树。 |
|
哈夫曼算法 | 略 |
|
第二章 树——普通题目
每棵非平凡树至少有两片树叶 | 证明:设P=v1v2…vk是非平凡树T中一条最长路,则v1与vk在T中的邻接点只能有一个,否则,要么推出P不是最长路,要么推出T中存在圈,这都是矛盾!即说明v1与v2是树叶 |
|
图G是树当且仅当G中任意两点都被唯一的路连接 | 必要性:树的定义+反证法。若不然,设P1与P2是连接u与v的两条不同的路。则由这两条路的全部或部分将构成一个圈,这与G是树相矛盾。 充分性:反证法+树的定义。首先,因G的任意两点均由唯一路相连,所以G是连通的。其次,若G中存在圈,则在圈中任取点u与v,可得到连接u与v的两条不同的路,与条件矛盾。 |
|
设T是(n, m)树,则: m = n - 1 | 数学归纳法。 当n=1时,等式显然成立; 设n=k时等式成立。考虑n=k+1的树T。 由定理1T中至少有两片树叶,设u是T中树叶,考虑T1=T-u,则T1为k阶树,于是m(T1)=k-1, 得m(T)=k。 |
|
具有k个分支的森林有n-k条边 | 对每个森林使用上面的结论即可 |
|
每个n阶连通图的边数至少为(n-1) | 当没有1度顶点时,显然; 当有1度顶点时,对定点数做数学归纳 |
|
(树的度序列问题) 设S={d1,d2,…,dn}是n个正整数序列,它们满足:d1≧d2≧…≧dn ,∑di=2(n-1).则存在一颗树T,其度序列为S。 | 数学归纳法 证明:对n作数学归纳;当n=1和2时,结论显然。假设对n=k时结论成立。设n=k+1 首先,序列中至少一个数为1,否则,序列和大于2k,与条件相矛盾!所以,dk+1=1.我们从序列中删掉d1和dk+1,增加数 d*=d1-1放在它应该在的位置。得到序列S1.该序列含k个数,序列和为2(k-1),由归纳假设,存在树T1,它的度序列为S1. 现在,增加结点v,把它和T1中点d*相连得到树T。树T为所求。 |
|
每棵树的中心由一个点或两个相邻点组成 | 对树T的阶数n作归纳证明。 当n=1或2时,结论显然成立。设对n<k(k≧3)的树结论成立。设T是k阶树。容易知道:删掉T的所有叶,得到的树T1的每个点的离心率比它们在T中离心率减少1。又因T的叶不能是中心点,所以T的中心点在T1中。这样,若点u的离心率在T中最小,则在T1中依然最小,即说明T的中心点是T1的中心点,反之亦然。 因为T1的阶数<k,所以,由归纳假设,T1的中心为一个点或两个相邻点组成,即证明T的中心由一个点或两个相邻点组成。 |
|
每一棵树有一个由一个点或两个邻接的点组成的形心。 | 无证明 |
|
每个连通图至少包含一棵生成树。 | 构造法(破圈)。 如果连通图G是树,则其本身是一棵生成树;若连通图G中有圈C,则去掉C中一条边后得到的图仍然是连通的,这样不断去掉G中圈,最后得到一个G的无圈连通子图T,它为G的一棵生成树。 |
|
|
|
|
第二章 树——难题
画出具有7个顶点的所有非同构的树 | 按树中存在的最长路进行枚举? | 套路是什么?? |
三角形图的生成树的棵树是多少? | 应该是3(大概率),因为并不是不同构,而是要算出来 |
|
设G是树且Δ≧k,则G至少有k个一度顶点 | 若不然,设G有n个顶点,至多k-1个一度顶点,由于Δ≧k,于是,由握手定理得: 2m =∑d(v) ≥ 1·(k−1) + 2·(n−k) + k·1 = 2n−1 > 2n−2 所以,有:m(G)>n-1,与G是树矛盾! |
|
τ (Kn) = nn−2,τ(km,n) = n^(m−1)*m^(n−1).K5 = 125,K3,3 = 81. |
|
|
证明:若e是完全图Kn的边,则τ(Kn-e)=(n-2)n^(n-3) | 证: Kn每棵生成树的的边数为(n-1), 生成树个数为n^(n-2),因此: Kn所有生成树的总边数为(n-1)*n^(n-2). 其中,每一条边e贡献的边数为(n-1)*n^(n-2)/[n(n-1)/2]. 所以Kn-e的生成树的棵树为τ(Kn-e)=n^(n-2)-2n^(n-3) |
|
|
| 不会做 |
荫度的定义 + K5的荫度 | G分解为边不重的森林因子的最少数目问题,称这个最少数目为G的荫度,记为σ(G)。 图G的荫度为:
其中s是G的子图Hs的顶点数,而:
例6 求σ(K5)
|
|
本章放弃的证明题
(大概率不考,但考前应过一遍以防万一)
在G中一个分支中取两个一度顶点u与v,令P是连接该两个顶点的唯一路,则G-P是有2t个奇数顶点的森林,由归纳假设,它可以分解为t条边不重合的路之并,所以G可以分解为t+1条边不重合的路之并。
回路系统未复习
第三章 图的连通度——概念部分
3.1 割边、割点和块
割边 | 边e为图G的一条割边,如果ω(G-e)>ω(G) |
|
割点 | 在G中,如果E(G)可以划分为两个非空子集E1与E2,使G[E1]和G[E2]以点v为公共顶点,称v为G的一个割点。 自环的顶点是割点!!! |
|
块 | 没有割点的连通图称为是一个块图,简称块; |
|
G的一个块 | G的一个子图B称为是G的一个块,如果(1), 它本身是块;(2), 若没有真包含B的G的块存在。 |
|
G的块割点树bc(G) | 设G是非平凡连通图。B1, B2 ,…, Bk是G的全部块,而v1,v2,…,vt是G的全部割点。构作G的块割点树bc(G):它的顶点是G的块和割点,连线只在块割点之间进行,一个块和一个割点连线,当且仅当该割点是该块的一个顶点。
|
|
3.2 连通度
点割集 | 给定连通图G,设
若G-V' 不连通,称V'为G的一个点割集, |
|
k顶点割 | 含有k个顶点的点割集。称为k顶点割。 |
|
最小顶点割 | G中点数最少的顶点割称为最小顶点割。 |
|
边割 | 设G为连通图,称使G-E′不连通的G的边子集E′为G的边割。 |
|
k 边割 | 含有k条边的边割称为k 边割 |
|
最小边割 | 边数最少的边割称为最小边割 |
|
(点)连通度k(G) | 在G中,若存在顶点割,称G的最小顶点割的顶点数称为G的点连通度;否则称n-1为其点连通度。G的点连通度记为k(G), 简记为k。若G不连通,k(G)=0。 |
|
边连通度λ(G) | 在G中,最小边割集所含边数称为G的边连通度。边连通度记为λ(G)。若G不连通或G是平凡图,则定义λ(G)=0 |
|
k连通的 | 在G中,若k (G)≧ k, 称G是k连通的; 若连通度是5,则可以是1连通的,2连通的,3连通的等。因此,"若G是k连通的,则G的连通度为k"错误!! |
|
k边连通的 | !!若λ(G)≧k,称G是k边连通的。!! |
|
两条(x,y)路 内部不相交的 或 独立的 | 图中两条(x, y) 路称为内部不相交的或独立的,如果此两条路仅x和y是其公共点。 |
|
分离x与y | 设x 与 y 是图G 中两个不同点,称一组点(边)分离x与y,是指 G 中删去这组点(边)后不再有(x, y) 路。 |
|
彼得森图 |
|
|
3.3 应用
哈拉里图Hk,n | 对一个赋权图G,试确定G的一个具有最小权的k 连通生成子图。 对G是完全图,各边的权均为1的特殊情况,问题是有解的。此时即求边数最少的有n个顶点的k 连通图G。 ,m 条边的 n 阶k 连通图满足 : k<=[2m/n] 即 m>=[kn/2] 若能构造出边数达到[kn/2]的 n阶k 连通图,则边数将已达到最少。即哈拉里图 |
|
平均距离μ(G) | 设G是n阶图(n≧2),G的平均距离μ(G)定义为:
平均距离是网络信息平均传输延迟的度量。(图的直径是最大传输延迟的度量) |
|
路族(也称容器) | 设x, y ∈V(G), Cw (x, y)表示G中w条内点不交路的路族 |
|
路族的宽度 | w称为路族的宽度 |
|
路族的长度 | C w (x, y)中最长路的路长成为该路族的长度,记为:l (Cw(x, y)) |
|
宽距离 | 设x, y ∈V(G), 定义x与y间所有宽度为w的路族长度的最小值d w( x , y)为x与y间w宽距离,即:
|
|
最优路族 | x与y间长度等于w宽距离的路族称为x与y间最优路族。所以,求w宽距离,就是要找到最优路族。 |
|
宽直径 | 设G是w连通的,G的所有点对间的w宽距离的最大值,称为G的w宽直径,记为d w (G)。即:
|
|
第三章 图的连通度——普通题目
边 e是图G的割边当且仅当e 不在G的任何圈中 | 均用反证法 可以假设G连通。 “必要性”:若不然。设 e 在图G的某圈C 中,且令e = u v.考虑P= C- e,则P是一条u v路。下面证明G-e连通。对任意 x,y ∈V(G-e) ,由于G连通,所以存在x ---y路Q.若Q不含e,则x与y在G-e里连通;若Q含有e,则可选择路:x ---u P v --- y,说明x与y在G-e里也连通。所以,若边e在G的某圈中,则G-e连通。但这与e是G的割边矛盾! “充分性” 如果e不是G的割边,则G-e连通,于是在G-e中存在一条u --- v 路,显然:该路并上边e得到G中一个包含边e的圈,矛盾。 |
|
e为连通图G的一条边,如果e含于G的某圈中,则G-e连通。 | 若不然,G-e不连通,于是e是割边。由定理1,e不在G的任意圈中,矛盾! |
|
求证:(1) 若G的每个顶点的度数均为偶数,则G没有割边; (2) 若G为k正则二部图(k≧2),则G无割边。 | (1)若不然,设e=uv 为G的割边。则G-e的含有顶点u(或v)的那个分支中点u(或v)的度数为奇,而其余点的度数为偶数,与握手定理推论相矛盾! (2)若不然,设e=uv 为G的割边。取G-e的其中一个分支G1, 显然,G1中只有一个顶点的度数是k-1,其余点的度数为k。并且G1仍然为偶图。假若G1的两个顶点子集包含的顶点数分别为m与n,并且包含m个顶点的顶点子集包含度为k-1的那个点,那么有:k m-1= k n。但是因k≧2,所以等式不能成立! |
|
G无环且非平凡,则v是G的割点,当且仅当 ω(G-v)>ω(G) | “必要性” 设v是G的割点。则E(G)可划分为两个非空边子集E1与E2,使G[E1],G[E2]恰好以v为公共点。由于G没有环,所以,G[E1],G[E2]分别至少包含异于v的G的点,这样,G-v的分支数比G的分支数至少多1,所以: ω(G-v)=ω(G) “充分性” 由割点定义结论显然。 |
|
v是树T的顶点,则v是割点,当且仅当v是树的分支点。 | “必要性” 若不然,有d(v)=1,即v是树叶,显然不能是割点。 “充分性” 设v是分支点,则d (v)>1.于是设x与y是v的邻点,由树的性质,只有唯一路连接x与y,所以G-v分离x与y .即v为割点。 |
|
设v是无环连通图G的一个顶点,则v是G的割点,当且仅当V(G-v)可以划分为两个非空子集V1与V2,使得对任意x ∈V1, y ∈V2, 点v在每一条x y路上。 | “必要性” v是无环连通图G的割点,由定理2,G-v至少有两个连通分支。设其中一个连通分支顶点集合为V1,另外分支顶点集合为V2,即V1与V2构成V的划分。对于任意的x∈V1, y ∈V2,如果点v不在某一条xy路上,那么,该路也是连接G-v中的x与y的路,这与x,y处于G-v的不同分支矛盾。 “充分性” 若v不是图G的割点,那么G-v连通,因此在G-v中存在x,y路,当然也是G中一条没有经过点v的x,y路。矛盾。 |
|
求证:无环非平凡连通图至少有两个非割点。 | 由于G是无环非平凡连通图,所以存在非平凡生成树,而非平凡生成树至少两片树叶,它不能为割点,所以,它也不能为G的割点。 |
|
求证:恰有两个非割点的连通单图是一条路。 | 设T是G的一棵生成树。由于G有n-2个割点,所以,T有n-2个割点,即T只有两片树叶,所以T是一条路。这说明,G的任意生成树为路。 一个单图的任意生成树为路,则该图为圈或路,若为圈,则G没有割点,矛盾,所以,G为路。 |
|
例4求证:若v是单图G的割点,则它不是G的补图的割点。 | v是单图G的割点,则G-v至少两个连通分支。现任取
, 如果x,y在G-v的同一分支中,令u是与x,y处于不同分支的点,那么,通过u,可说明,x与y在G-v的补图中连通。若x,y在G-v的不同分支中,则它们在G-v的补图中邻接。所以,若v是G的割点,则v不是其补图的割点。 |
|
若|V(G)|≧3,则G是块,当且仅当G无环且任意两顶点位于同一圈上。 | (必要性)设G是块。因G没有割点且|V(G)|≧3 ,所以,它不能有环。对任意u, v ∈V(G),下面证明u, v位于某一圈上。对d(u, v) 作数学归纳法证明。当d(u, v) =1时,由于G是至少3个点的块,所以,边uv不能为割边,否则,u或v为割点,矛盾。由割边性质,uv必然在某圈中。设当d(u, v) <k时结论成立。设d(u, v) =k。设P是一条最短(u, v)路,w是v前面一点,则d (u, w) =k-1。由归纳假设,u与w在同一圈C =P1∪P2上。
考虑G-w.由于G是块,所以G-w连通。设Q是一条在G-w中的(u, v)路,并且设它与C的最后一个交点为x。
则uP1xvwP2为包含u, v的圈。 (充分性):若G不是块,则G中有割点v。由于G无环,所以G-v至少两个分支。设x, y是G-v的两个不同分支中的点,则x, y在G中不能位于同一圈上,矛盾! |
|
点v是图G的割点当且仅当v至少属于G的两个不同的块。 | (必要性) 设v是G的割点。由割点定义:E(G)可以划分为两个边子集E1与E2。显然G[E1]与G[E2]有唯一公共顶点v。设B1与B2分别是G[E1]和G[E2]中包含v的块,显然它们也是G的块。即证明v至少属于G的两个不同块。 (充分性) 如果v属于G的两个不同块,我们证明:v 一定是图G的割点。如果包含v的其中一个块是环,显然v是割点;设包含v的两个块是B1与B2。如果包含v的两个块不是环,那么两个块分别至少有两个顶点。假如v不是割点,在B1与B2中分别找异于v的一个点x与y, x ∈V(B1), y ∈V(B2),则在G-v中有连接x与y的路P。 显然:B1∪B2∪P无割点。这与B1,B2是块矛盾! |
|
对任意图G,有:
| (1) 先证明λ(G)≦δ(G):最小度顶点的关联集作成G的分离集,所以:λ(G)≦δ(G)。 (2) 再证明k (G)≦ λ(G) |
|
是否存在κ(G) < λ(G) < δ(G) |
|
|
是否存在κ(G) = λ(G) = δ(G) |
|
|
对任意正整数a ≤ b ≤ c, 都存在图G,使得:κ=a,λ=b,δ=c | Yes |
|
设G是具有 m条边的n阶连通图,则 k<=[2m/n] | δ≤2m/n 由定理6 ,κ≤δ,再考虑到κ是一个整数,所以 k<=[2m/n] |
|
设G是n阶简单图,若δ(G)≥ [n/2], 则G必连通。且λ(G) =δ(G) | 证G连通: [反证法]若G 不连通,则G至少有两个连通分支,从而必有一个分支H 满足 |V(H)|≤[n/2] 因G是简单图,从而
于是δ(G)≤δ(H)≤Δ(H)<[n/2]. 这与已知矛盾,所以G必连通。 证λ(G) =δ(G) 若不然,λ(G) <δ(G). 设G的边割为M,且|M|= λ(G),设G-M中G1分支中与M相关联的顶点数为P,显然有:P<=λ(G) (1) G1中至少有一个顶点x不与G2中顶点邻接。
我们对G1中顶点数作估计:由握手定理:
又λ(G)<δ(G) ,所以:
这说明:G1中至少有一个顶点x不与G2中顶点邻接。 而
所以:
同理,有:|V(G2)|≥δ(G)+1 于是δ(G)<[n/2],矛盾! |
|
设G是n 阶简单图,对正整数k<n,若
则G 是 k 连通的。 | 任意删去G中k-1个点,记所得之图为H,则 δ(H)≥δ(G)-(k-1)≥(n+k-2)/2 -k+1=(n-k)/2 因δ(H)是整数, 故
而n-k+1是H的点数,由引理1知H是连通的。所以G是k连通的。 |
|
设x和y是图G中的两个不相邻点,则 G中分离x和y的最少点数 = 独立的(x, y) 路的最大数目。 | 点形式 敏格尔定理 |
|
设x和y是图G中的两个不同点,则 G中分离x和y的最少边数 = 边不重的(x, y) 路的最大数目。 | 边形式 敏格尔定理 |
|
对k≥2,图G 是 k 连通的当且仅当G 中任意两个不同顶点间均存在k 条独立路; | (必要性)设 G 是 k 连通图. 由k 连通的定义,G 中分离任意一对顶点至少需k 个点。从而,对G中任意两个顶点x 和 y, 若 x与 y 不相邻,则由定理10,G中存在 k 条独立路;若x 与 y 相邻,则删去连接x 与 y 的边之后所得的图G′的连通度至少为k-1,从而G′中分离 x 与 y 至少需 k-1个点。于是由定理10(敏格尔定理),G′中存在 k-1条独立路, 这k-1条独立路连同xy便是G 中 k 条独立路。 (充分性)假设G中任意两个顶点间至少存在k条独立路。设U是G的最小顶点割,即|U|= κ(G)。令x与y是G-U的处于不同分支的两个点。所以U是x与y的分离集,由敏格尔定理:κ(G) = |U| ≧k, 即证明G是k连通的。 |
|
设G是阶至少为3的图,则以下三个命题等价。
| (1)⇒(2)G是2连通的,则G的任意两个顶点间存在两条独立路P1与P2.这两条路构成包含该两个顶点的圈。 (2)⇒(1)G中任意两点都位于同一个圈上,则该两点间存在两条独立路P1与P2.由推论1可知,G是2连通的。 (2)⇒(3)任意两点都位于同一个圈,则G无孤立点。下证:任意两条边都在同一个圈上。设e1与e2是G的任意两条边,在e1与e2上分别添加两点u与v得图H,则H是2连通的。 由(1)(2)等价可知,H的任意两个顶点在同一个圈上,即u与v在同一个圈上,也即e1与e2在同一个圈上。 (3) ⇒(2)设u与v是图G的任意两个顶点。由于G至少3个点且无孤立点,所以可设e1, e2分别与u, v相关联,且e1≠e2 . 因为e1,e2在同一个圈上,所以u与v在同一个圈上。 |
|
n点圈Cn的宽直径 | 对于Cn来说,连通度为2,因此,可以求它的1直径和2直径; n点圈Cn的宽直径。显然,
因为C n中任意点对间只有一个唯一的宽度为2的路族,点对间的2距离就是该点对的唯一路族的长度。当x与y邻接时,路族的长度最长,为n-1,所以,由宽直径定义得: d2(Cn)=n-1 |
|
n阶完全图Kn的宽直径 | 对于Kn来说,连通度是n-1,所以,可以考虑它的1到n-1直径. kn的宽直径。显然:d1(Kn)=1; 对于任意的w(2≦w≦n-1),点对间的最优路族长为2.所以,有:
|
|
第三章 图的连通度——易错题目
判断:2连通图的连通度一定为2 | 错误!图G是2连通图就是图G是2连通的意思(吗?) 所以连通度>=2而不是一定=2 |
|
判断:没有割点的图一定没有割边 | 错误!如K2 |
|
判断:n(n>=3)阶图G是块,则G中无环,且任意两点均在同一圈上。 | 正确! 书上原定理:若|V(G)|≧3,则G是块,当且仅当G无环且任意两顶点位于同一圈上。 |
|
有环的图一定不是块 | 错误!如一个顶点+自环 |
|
|
应该选A,因为G中可能只有自环 |
|
Kn的点连通度是多少?边连通度是多少? | 点连通度n-1; 边连通度n-1. |
|
第三章坚韧度 核度 未复习,建议考前最好看一看以防万一。
第四章 Euler图与Hamilton图——概念部分
4.1 欧拉图
Euler迹 | 经过G的每条边的迹 |
|
Euler闭迹/Euler回路/欧拉环游 | 经过G的每条边的闭迹 |
|
Euler图 | 在Euler闭迹的图 |
|
一笔画问题 | 画一个图形,在笔不离纸,每条边只画一次而不允许重复的情况下,画完该图。本质上就是一个图是否存在欧拉迹的问题。 (在原图上添加1笔,可使其变为欧拉图。) |
|
三笔画问题 | 在原图上添加三笔,可使其变为欧拉图。 |
|
Fleury(弗勒里)算法 | 寻找欧拉回路。 (1)任意选择一个顶点v0,置w0=v0; (2)、 假设迹wi=v0e1v1…eivi已经选定,那么按下述方法从E-{e1,e2,…,ei}中选取边ei+1: 1)、 ei+1与vi相关联; 2)、除非没有别的边可选择,否则 ei+1不能是Gi=G-{e1,e2,…,ei}的割边。 (3)、 当(2)不能执行时,算法停止。 |
|
4.3 中国邮递员问题
中国邮路问题 | 邮递员派信的街道是边赋权连通图。从邮局出发,每条街道至少行走一次,再回邮局。如何行走,使其行走的环游路程最短? |
|
4.4 Hamilton图
H图 | 如果经过图G的每个顶点恰好一次后能够回到出发点,称这样的图为哈密尔顿图,简称H图。 |
|
哈密尔顿圈 | 所经过的闭途径是G的一个生成圈,称为G的哈密尔顿圈。 正十二面体是H图:
|
|
H路 | 如果存在经过G的每个顶点恰好一次的路,称该路为G的哈密尔顿路,简称H路。 |
|
彼得森图 |
不是H图!! |
|
闭图 | 在n阶单图中,若对d (u) + d (v) ≧n 的任意一对顶点u与v,均有u a dj v , 则称G是闭图。 |
|
闭包 | 称G_图G的闭包,如果它是包含G的极小闭图。 如果G本身是闭图,则其闭包是它本身;如果G不是闭图,则由定义可以通过在度和大于等于n的不相邻顶点对间加边来构造G的闭图。 |
|
4.5 度极大非Hamilton图
度极大非H图 | 图G称为度极大非H图,如果它的度不弱于其它非H图。 |
|
Cm,n图 (度极大非H图族!!) | 对于1≦ m <n/2 ,C m,n图定义为:
|
|
4.6 旅行售货员问题
*
边交换技术: TSP问题即旅行售货员问题,是应用图论中典型问题之一。问题提法为:一售货员要到若干城市去售货,每座城市只经历一次,问如何安排行走路线,使其行走的总路程最短。 边交换技术——求的是近似最优解 | 在赋权完全图中取一个初始H圈C=v1v2,…,vnv1;
如果存在下图中红色边,且w(vivi+1)+ w(vjvj+1)≧w(vivj)+ w(vi+1vj+1),则把C修改为: C1=v1v2,…,vivj…vi+1vj+1…,vnv1
|
|
最优H圈的下界 | 可以通过如下方法求出最优H圈的一个下界: (1) 在G中删掉一点v(任意的)得图G1; (2) 在图G1中求出一棵最小生成树T; (3) 在v的关联边中选出两条权值最小者e1与e2. 若H是G的最优圈,则:
|
|
4.8 超H图+E图和H图的联系
超H图 | 若图G是非H图,但对于G中任意点v,都有G-v是H图,则称G是超H图。 彼得森图是超H图。 |
|
超可迹的 | 若G中没有H路,但是对G中任意点v,G-v存在H路,则称G是超可迹的。 |
|
不存在超可迹的图。 | × |
|
任何3连通3正则可平面图是H图。 | × |
|
每个4连通4正则图是H图。 | ×
Meredith图是由彼得森图的每个顶点嵌入一个K3,4作成。 |
|
每个3连通3正则偶图是H图。 | × |
|
图的平方 | 图G的平方G2是这样的图:
|
|
每个2连通图的平方是H图。 | √ |
|
E图但非H图 E图且H图 非E图但H图 非E图且非H图 | 有割点的闭迹; 长为n的圈 K6 彼得森图 |
|
线图 | 图G的线图L(G)定义为 (1) V(L(G))=E(G); (2) (e1, e2)∈E(L(G))当且仅当e1与e2在G中相邻。 |
|
n次迭线图 | G的n次迭线图Ln(G)定义为
|
|
n次细分图 | 称Sn是图G的n次细分图,是指将G的每条边中都插入n个2度顶点。 |
|
Ln(G) | 定义 Ln(G)=L(Sn‒1(G))。 一般地,Ln(G)≠L^(n)(G)。 |
|
第四章 Euler图与Hamilton图——普通题目
假定G是一个连通图,则下列命题等价: (1) G是欧拉图。 (2) G的每个点的度是偶数。 (3) G的边集能划分为边不重的圈的并。 | 证明:(1)Þ(2) 令C是G中的一条Euler闭迹。G中任一个给定的点在C中每出现一次恰好关联两条边,因为G的每条边在C中仅出现一次,所以该点的度应为该点在C中出现的次数的两倍,所以是一个偶数。 (2)Þ(3)对G的边数归纳证明。当G的边数为1时,此时G只能是自环,结论显然成立。假设G的边数大于1,从任意一点出发,寻找一条通路直到某一个顶点再次遇到,假设为v。则v到v的通路构成一个圈。从G中移去得到的圈,则得到的每个连通分支是一个满足条件,边数较少的图。由归纳假设知,结论显然成立。 (3)Þ(1) 令C1是这个划分的一个圈。若G仅由这个圈组成,则G显然是欧拉图。否则,有另外一个圈C2,且C2与C1有一个公共点v。从v开始并且由C1与C2相连组成的通道是含有这两个圈中各条边的一条闭迹。继续这个过程,我们可以构成一条含有G的所有边的闭迹,从而G是欧拉图。 |
|
连通图G有Euler迹当且仅当G最多有两个奇点。 | 显然,G有Euler闭迹当且仅当G有零个奇点。若G有Euler非闭迹C,并设点u和v分别是C的起点和终点。记在C中添加一条连接u和v的边e后所得到的图为C+e。显然,C+e是一条Euler闭迹, 则由已证结论知, C+e有零个奇点,从而C, 即G仅有两个奇点。 反之,设G是恰有两个奇点u和v的连通图。在u和v间添加新边e得图G+e,则 G+e没有奇点。由已证结论, G+e有Euler闭迹, 从而G有Euler迹。 (一笔画问题本质上就是一个图是否存在欧拉迹的问题) |
|
在平面内,某图是 否可以在三笔之内画成? | 三笔画-->添三笔成欧拉图-->最多含有6个奇度顶点 |
|
证明:若G有2k个奇度顶点,则存在k条边不重的迹Q1,Q2,…, Qk,使得: E(G)=E(Q1)UE(Q2)U...UE(Qk) | 不失一般性,只就G是连通图进行证明。令vl, v2,…, vk, vk+1,…, v2k是G的所有奇度点。在vi与vi+k间连新边ei得图G*(1≤ i ≤k),则G*是欧拉图。因此,图G*存在欧拉回路C。在C中删去ei (1≤ i ≤k),得k条边不重的迹Qi (1≤ i ≤k): E(G)=E(Q1)UE(Q2)U...UE(Qk) |
|
1. 当n满足什么条件时,完全图Kn是欧拉图? 2. 当n满足什么条件时,n方体Qn是欧拉图? 3. 若完全二部图Ka, b为欧拉图,a和b需满足什么条件? | 1. 奇数;2. 偶数;3. a和b均为偶数 |
|
假设图G恰好有两个连通分支,并且每个连通分支都是欧拉图,若要将G变为欧拉图,最少需要添加几条边? | 最少需要添加2条边 |
|
欧拉图中是否存在割边? | 不存在 |
|
能否将一副多米诺骨牌排成一行,使得对于任意相邻的两块牌,它们的接触面具有相同的点数? | 存在满足条件的排列方式。 每块骨牌可以用唯一的一对数字(a, b)来表示,其中0 ≤ a ≤ b ≤ 6。比如,(3, 4)表示骨牌 以数字0, 1, 2,…, 6为顶点,先构造完全图K7,然后在每个顶点处再添加一个自环,所得图用G来表示。 图G的每条边对应一块骨牌,比如顶点3处的自环表示骨牌(3, 3)。 问题转化为判断图G是否为欧拉图。图G的每个顶点的度数为8,因此,G是欧拉图。 |
|
若G是非平凡的欧拉图,则G的每个块也是欧拉图。 | 设B是G的任意一个块,C是G的一个欧拉回路。从B的某一点v出发,沿着C前进。由块的定义知,欧拉回路C只有经过G的割点才能离开B,也只有经过同一割点才能回到B中。 我们将C中不属于B的那些边去掉,得到一个回路。该回路经过了B的每条边。因此,该回路是B的欧拉回路。所以,B是欧拉图。 |
|
证明:若G和H是欧拉图,则 G×H是欧拉图 | 首先,对任意u∈V(G),v∈V(H),必有
事实上,设z是u的任意一个邻点,一定有(u, v)的一个邻点(z, v),反之亦然。同理,对于v的任意一个邻点w,一定有(u, v)的一个邻点 (u, w),反之亦然。因此,(u, v)在积图G×H中邻点个数等于u在G中邻点个数与v在H中邻点个数之和。所以,当G, H为欧拉图时,则G×H的顶点度数为偶数。 其次,G×H必为连通图。对任意的顶点(u1, v1)∈V(G×H),(u2, v2)∈V(G×H),它们之间必存在一条通路。由于G是欧拉图,从而G必为连通图。因此,在G中存在一条连接u1和u2的路(u1x1x2···xpu2)。同理,在H中存在一条连接v1和v2的路(v1y1y2···yqv2)。由定义知,在G×H中存在一条连接(u1, v1)和(u2, v2) 的路(u1, v1)(x1, v1)···(xp, v1)(u2, v1)(u2, y1) ···(u2, yq)(u2, v2)。因此,G×H是每个顶点度数为偶数的连通图。 所以,G×H是欧拉图。 |
|
若W是包含图G的每条边至少一次的闭途径,则W具有最小权值当且仅当下列两个条件被满足: (1) G的每条边在W中最多重复一次; (2) 对于G的每个圈上的边来说,在W中重复的边的总权值不超过该圈非重复边总权值。 | 求包含下图G的一个最优欧拉环游。
| ⭐⭐⭐⭐ |
如果一个非负权的边赋权图G中只有两个奇度顶点u与v,设计一个求其最优欧拉环游的算法。 | 解: 1、 算法 (1)、 在u与v间求出一条最短路P; (最短路算法) (2)、 在最短路P上,给每条边添加一条平行边得G的欧拉母图G*; (3)、 在G的欧拉母图G* 中用Fleury算法求出一条欧拉环游。 |
|
定理:用上面方法求出的欧拉环游是最优欧拉环游。 | 证明:设u与v是G的两个奇度顶点,G*是G的任意一个欧拉母图。 考虑G*[E*-E], 显然它只有两个奇数顶点u与v, 当然它们必须在G*[E*-E]的同一个分支中,因此,存在(u, v)路P*. 所以,
即证明定理 |
|
正十二面体是一个H图 |
|
|
证明:下图是非H图:
| 因为在G中,边uv是割边,所以它不在G的任意圈上,于是u与v不能在G的同一个圈上。故G不存在包括所有顶点的圈,即G是非H图。 |
|
(必要条件) 若G为H图,则对V(G)的任一非空顶点子集S,有: ω(G-S)<=|S| (若ω(G-S)>|S|,则G不是H图) | 证明:G是H图,设C是G的H圈。则对V(G)的任意非空子集S, 容易知道: ω(C-S)<=|S| 所以有: ω(G-S)<=ω(C-S)<=|S| |
|
对于n≧3的单图G,如果G中有: δ(G)>=n/2 则G是H图(Dirac定理); | 若不然,设G是一个满足定理条件的极大非H简单图。显然G不能是完全图,否则,G是H图。 于是,可以在G中任意取两个不相邻顶点u与v。考虑图G + u v,由G的极大性,G+ u v是H图。且G+ u v的每一个H圈必然包含边u v。 所以,在G中存在起点为u而终点为v的H路P。 不失一般性,设起点为u而终点为v的H路P为:P=v1v2v3...vn, u=v1, v = vn. 令
则
且(否则G中有圈,与假设矛盾)
于是d(u)+d(v)=|S|+|T|=|SUT|+|S∩T|<n 与已知δ(G)>=n/2矛盾 |
|
对于n≧3的单图G,如果G中的任意两个不相邻顶点u与v,有: d(u)+d(v)>=n 则G是H图.(Ore定理) | 证明同上 紧的:(竟然考过!!) 该定理的条件是紧的。例如:设G是由Kk+1的一个顶点和另一个Kk+1的一个顶点重合得到的图,那么对于G的任意两个不相邻顶点u与v,有:d(u)+d(v)=2k=n-1 但G是非H图 |
|
对于单图G,如果G中有两个不相邻顶点u与v,满足: d(u)+d(v)>=n,则 那么G是H图当且仅当G + u v是H图。 | 证明略,不要求 |
|
若G1和G2是同一个点集V的两个闭图,则G=G1∩G2是闭图。 | 任取u, v∈V(G1 ∩ G2),如果有: dG(u)+dG(v)>=n 易知
因G1与G2都是闭图,所以u与v在G1与G2中都邻接,所以,在G中也邻接。故G是闭图。 |
|
G1与G2都是闭图,它们的并不一定是闭图。 | 例:
|
|
图G的闭包是唯一的。 | (证明略) |
|
图G是H图当且仅当它的闭包是H图。 | “必要性”显然。 “充分性” :假设G的闭包是H图,我们证明G是H图。假设G的闭包和G相同,结论显然。 若不然,设ei (1≦i≦k)是为构造G的闭包而添加的所有边,由引理1,G是H图当且仅当G+e1是H图, G+e1是H图当且仅当G+e1+e2是H图,…, 反复应用引理1,可以得到定理结论。 |
|
设G是n≧3的单图,若G的闭包是完全图,则G是H图。 | 由上面的闭包定理, 且完全图一定是H图 |
|
设简单图G的度序列是(d1,d2,…,dn), 这里,d1≦d2≦…≦dn,并且n≧3.若对任意的m<n/2,或有 dm>m,或有dn-m ≧ n-m,则G是H图。 | 证明:如果G的闭包是Kn,则G是H图。 否则,设u与v是G的闭包中不相邻接的且度和 最大的两点,又假设: 略(应该不会考证明) 但是!会考G的闭包是完全图!该定理的证明方法就是证G的闭包是完全图! |
|
求证下面是H图
| 在G中有:d1=d2=d3=3;d4=d5=5;d6=6;d7=7;d8=d9=8 所以对任意m=1,2,3,4. d1=d2>1; d(9-3)=d6=6>=6;d(9-4)=5>=5 所以,由度序列判定法,G是H图。 |
|
????本定理来自杨春老师PPT,存疑 定理5' (Chvátal——度序列判定法) 设简单图G的度序列是(d1,d2,…,dn), 这里,d1≦d2≦…≦dn,并且n≧3.若存在m<n/2, 有 dm ≤ m ,或有d n - m < n-m,则G是非H图。 |
|
|
对于1≦m<n/2的图Cm,n是非H图。 | 证明:取S=V(km),则ω(G-S)=m+1>|S|=m,所以,由H图的性质知,G是非H图。 |
|
若G是n≧3的非H单图,则G度弱于某个Cm,n图。 | 设G是度序列为 (d1,d2,…,dn)的非H单图,且d1≦d2≦…≦dn, n≧3。 由度序列判定法:存在m<n/2,使得dm≦m,且dn-m<n-m.于是,G的度序列必弱于如下序列:
而上面序列正好是图Cm,n的度序列。 该条件逆命题不成立: 当n=5时,其度极大非H图族是:C1,5与C2,5。C1,5的度序列是:(1,3,3,3,4), C2,5的度序列是(2,2,2,4,4)。。 而5阶圈C5的度序列是: (2,2,2,2,2),它度弱于C2,5,但是C5是H图。 |
|
如果n阶单图G度优于所有的Cm,n图族,则G是H图。 | 如:G的度序列是(2,3,3,4,4),优于C1,5的度序列 (1,3,3,3,4)和C2,5的度序列 (2,2,2,4,4)。所以可以断定G是H图。 |
|
设G是n阶单图。若n≧3且
则G是H图;并且,具有n个顶点
条边的非H图只有C1,n以及C2,5. | 证明: (1) 先证明G是H图。 若不然,由定理1,G度弱于某个Cm,n,于是有:
这与条件矛盾!所以G是H图。 (2) 对于C1,n,有:
除此之外,只有当m=2且n=5时有:
这就证明了(2)。 |
|
设G是度序列为(d1,d2,…,dn)的非平凡单图,且d1≦d2≦…≦dn。证明:若G不存在小于(n+1)/2的正整数m,使得:dm<m且dn-m+1<n-m,则G有H路。 | 在G之外加上一个新点v,把它和G的其余各点连接得图G1 G1的度序列为: (d1+1,d2+1,…,dn+1, n) 由条件:不存在小于(n+1)/2的正整数m,使得dm+1≦m,且dn-m+1+1<n-m+1=(n+1)-m。于是由度序列判定定理知:G1是H图,得G有H路。 |
|
一只老鼠吃3*3*3立方体乳酪。其方法是借助于打洞通过所有的27个1*1*1 的子立方体。如果它从一角上开始,然后依次走向未吃的立方体,问吃完时是否可以到达中心点? | 如果把每个子立方体模型为图的顶点,且两个顶点连线当且仅当两个子立方体有共同面。那么,问题转化为问该图中是否存在一条由角点到中心点的H路。 如果起点作为坐标原点,那么27个子立方体可以编码为:(1,1,1),(1,1,2),(1,1,3),(1,2,1),(1,2,2),(1,2,3),(1,3,1),…,(3,3,3) G是偶图,且如果(1,1,1)在X中,则中心点(2,2,2)必在Y中。 又容易知道:|X|=14, |Y|=13. G中不存在由点(1,1,1)到点(2,2,2)的H路。否则,将(1,1,1)和(2,2,2)连线后得到的图G1有H圈。但是,G1不能是H图。因为在G1中,取S=Y,则可得到:14=ω(G1-S)>|S|=13. 故,老鼠最后不能到达中心点。 |
|
设G是赋权完全图,对所有的x, y, z ∈V(G),满足三角不等式:W (xy)+ W (y z) ≧ W ( xz) .证明:G中最优圈的权最多是2W(T),这里T是G中一棵最小生成树。 | 设T是G的一棵最小生成树,将T的每条边添上一条平行边得图T1,显然T1是欧拉图。 设Q是T1的一个欧拉环游:Q=vi1vi2….vikvi1 则:W(T1)=W(Q)=2W(T) 现在,从Q的第三点开始,删掉与前面的重复顶点,得到G的顶点的一个排列π。 由于G是完全图,所以该排列对应G的一个H圈。 在π中任意一条边(u ,v),在T中有一条唯一的(u, v)路P,而该路正好是在Q中的u与v间的部分。 由三角不等式知:W(uv)≦W(P)。 由于将π中的边uv用T中的uv路P来代替就得到Q,所以:W(π)≦W(Q)=2W(T) 即最优圈H的权值满足: W(H)≦W(π)≦W(Q)=2W(T) |
|
每个3正则H图至少有3个生成圈 | 略 |
|
1. 线图L(G)顶点数等于G的边数; 2. 若e=uv是G的边,则e作为L(G)的顶点,度数为 dL(G)(e)=dG(u)+dG(v)‒2。 | 略 |
|
若G具有n个点,m条边,则线图L(G)的边数为
| 由定义知,L(G)有m个顶点。对于G中任一顶点v,关联于该顶点的d(v)条边在L(G)中产生的边数为d(v)(d(v)‒1)/2。因此,L(G)的边数为
|
|
一个图同构于它的线图当且仅当它是圈 |
|
|
若图G1和G2有同构的线图,则除了一个是K3而另一个是K1,3外,G1和G2同构。 |
|
|
(1)若G是E图,则L(G)既是E图又是H图。 (2)若G是H图,则L(G)是H图。 | 略 |
|
一个图G是E图的充要条件是L3(G)为H图。 |
|
|
若G是具有n个点的非平凡连通图且不是一条路,则当k≥n‒3时,图L^(k)(G)是H图。 |
|
|
第四章 Euler图和Hamilton图——易错题目
设G是一个边赋完全图。如何求出G的最优哈密尔顿圈权值的一个下界?为什么? | 假设 C 是最优哈密尔顿圈,则对于赋权完全图中任意一点 v ,C −v 必然是 G−v 的 一条哈密尔顿路,因此它也是 G−v 的一棵生成树.由此,若 T 是 G−v 的一棵最小 生成树,同时 e,f 是 G 中与点 v 相关联的两条边,使得它们的权值之和尽可能小,则 W(C) ≥ W(T) + W(e) + W(f),即获得最优圈的一个下界. |
|
判断:设n(n>=3)阶单图的最小度满足δ>=n/2, 则其闭包一定为完全图。 | 正确!δ>=n/2故d(u)+d(v)>=n,故同下一条可证! |
|
判断:设n(n>=3)阶单图的的任意两个不邻接顶点u与v满足d(u)+d(v)>=n, 则其闭包一定为完全图。 | 正确!其闭包中任意两个顶点u与v,要么相邻;要么不相邻。但因为不相邻的都满足d(u)+d(v)>=n,故由闭包定义,都相邻。所以闭包是完全图!!! |
|
判断:有割点的图一定是非H图 | 错误,如K3加一个自环。 |
|
判断:一个简单图G是H图 当且仅当 它的闭包是H图 | 正确。图G是H图当且仅当它的闭包是H图 |
|
判断:欧拉图中一定没有割点 | 错误!显然。 |
|
判断:欧拉图中一定没有割边 | 正确 |
|
判断:每个顶点度数均为偶数的图是欧拉图。 | 错误!要连通! |
|
设G是一个边赋权完全图。如何求出G的最优哈密尔顿圈的权值的一个下界?为什么? |
|
|
(2) 圆桌会议座位安排 Q:若干人围圆周开会,每个人会不同的语言,如何安排座位,使得每个人能够和他身边的交流 M:点表示人,连线表示当且仅当两个人能交流,即至少会同一种语言。(可能你一下子想到的偶图模型,的确该问题可以抽象成偶图模型,但很难转化为图论问题) | A:给出该图的一个H圈 |
|
(必要条件) 若G为H图,则对V(G)的任一非空顶点子集S,有: ω(G-S)<=|S| (若ω(G-S)>|S|,则G不是H图) | 证明:G是H图,设C是G的H圈。则对V(G)的任意非空子集S, 容易知道: ω(C-S)<=|S| 所以有: ω(G-S)<=ω(C-S)<=|S| |
|
K2n可分解为一个1因子和n-1个2因子之和。 | 证明:设V(K2n)={v1,v2,…,v2n} 作n-1条路:
脚标按模2n-1计算。然后把v2n和Pi的两个端点连接。 例5 把K6分解为一个1因子和2个2因子分解。
|
|
第五章 匹配与因子分解——概念部分
该部分未总结
第五章 匹配与因子分解——易错题目
证明:若G是k (k>0)正则偶图,则G存在完美匹配。 | 一方面,由于G是k (k>0)正则偶图,所以k|X|=k|Y|,于是得|X| = |Y|; 另一方面,对于X的任一非空子集S, 设E1与E2分别是与S和N(S)关联的边集,显然有E1包含在E2中,即:
由Hall定理,存在由X到Y的匹配.又|X| = |Y|,所以G存在完美匹配。 |
|
证明:每个k (k>0)正则偶图G是一可因子分解的。 | 因为每个k (k>0)正则偶图G存在完美匹配,设Q是它的一个一因子,则G-Q还是正则偶图,由归纳知,G可作一因子分解。 |
|
证明: 设G=(X, Y)是偶图,则G存在饱和X每个顶点的匹配的充要条件是: 注: (1) G=(X,Y) “存在饱和X每个顶点的匹配”也常说成“存在由X到Y的匹配”。 | “必要性” 如果G存在饱和X每个顶点的匹配,由匹配的定义,X的每个顶点在Y中至少有一个邻接点,所以:
“充分性” 如果G是满足条件(*)的偶图,但不存在饱和X每个顶点的匹配。令M*是G的一个最大匹配,但不饱和X的顶点u.
又令Z是通过M*与点u相连形成的所有M*交错路上的点集。 因M*是最大匹配,所以u是所有交错路上唯一的一个未饱和点。
令S=X∩Z , T=Z∩Y 显然,S-{u}中点与T中点在M*下配对,即: |T| = |S| -1< |S| 即: |N(S)| = |T| = |S| -1< |S| ,与条件矛盾。 |
|
判断:k(k ≥1)正则偶图一定存在完美匹配 | 正确! |
|
匈牙利算法不能求出偶图的最大匹配,只能用它求偶图的完美匹配; | 正确! |
|
图G的一个完美匹配实际上就是它的一个1因子。 | 错误!匹配是边集然而1因子是生成子图! |
|
一个连通图可2因子分解当且仅当它是偶数度正则图。 | 必要性显然。 充分性:当G是n阶2正则图时,G本身是一个2因子。设当G是n阶2k正则图时,可以进行2因子分解。当G是n阶2k+2正则图时,由1891年彼得森证明过的一个结论:顶点度数为偶数的任意正则图存在一个2因子Q。所以,G-Q是2k阶正则图。由归纳假设,充分性得证。 |
|
每个没有割边的3正则图是一个1因子和1个2因子之和。 | 因每个没有割边的3正则图存在完美匹配M,显然,G-M是2因子。 |
|
K2n可分解为一个1因子和n-1个2因子之和。 | 设V(K2n)={v1,v2,…,v2n} 作n-1条路:
脚标按模2n-1计算。然后把v2n和Pi的两个端点连接。 |
|
K9的2因子分解的数目是多少? |
|
|
若 n 为偶数且 δ(G) ≥ n/2 + 1,则 n 阶图 G 有 3-因子. | 因 δ(G) ≥ n/2+1,由 Dirac 定理得:n 阶图 G 有 H 圈 C. 又因 n 为偶数,所以 C 为偶圈. 于是由 C 可得到 G 的两个 1 因子,设其中一个为 F1. 考虑 G1 = G−F1,则 δ(G) ≥ n/2.于是 G1 中有 H 圈 C1. 作 H = C1 ∪F1.显然 H 是 G 的一个 3-因子 |
|
G的匹配M是最大匹配,当且仅当G不包含M可扩路。 | 贝尔热定理! |
|
在偶图中,最大匹配的边数等于最小覆盖的顶点数。 | 正确!条件是在偶图中!! |
|
设M是G的匹配,K是G的覆盖,若|M|=|K|,则M是最大匹配,而G是最小覆盖。 | 正确!不需要是偶图 证明:设M*与K*分别是G的最大匹配和最小覆盖。 由匹配和覆盖定义有:|M*|≦|K*|。所以,有: |M|≦|M*|≦|K*|≦ |K| 所以,当|M|=|K| 时,有|M| =|M*|,|K*|= |K| 即M是最大匹配,而G是最小覆盖。 |
|
第六章 平面图——概念部分
6.1 平面图概念与性质
G可以嵌入平面/G是可平面图 | 如果能把图G画在平面上,使得除顶点外,边与边之间没有交叉,称G可以嵌入平面,或称G是可平面图 |
|
平面嵌入 | 可平面图G的边不交叉的一种画法,称为G的一种平面嵌入,G的平面嵌入表示的图称为平面图。 |
|
G的一个面 | 一个平面图G把平面分成若干连通片,这些连通片称为G的区域,或G的面。G的面组成的集合用Φ表示。 |
|
内部面/外部面 | 面积有限的区域称为平面图G的内部面,否则称为G的外部面。 |
|
deg(f) | 在G中,顶点和边都与某个给定区域关联的子图,称为该面的边界。某面 f 的边界中含有的边数(割边计算2次)称为该面 f 的次数, 记为deg ( f )。 |
|
6.2 特殊平面图与平面图的对偶图
极大可平面图 | 设G是简单可平面图,如果G是Ki (1≦i≦4),或者在G的任意非邻接顶点间添加一条边后,得到的图均是非可平面图,则称G是极大可平面图。 |
|
极大平面图 注:只有在单图前提下才能定义极大平面图。 | 极大可平面图的平面嵌入称为极大平面图。 |
|
外可平面图 | 若一个可平面图G存在一种平面嵌入,使得其所有顶点均在某个面的边界上,称该图为外可平面图。 |
|
外平面图 | 外可平面图的一种外平面嵌入,称为外平面图。 |
|
对偶图G* | 定义4 给定平面图G,G的对偶图G*如下构造: (1) 在G的每个面fi内取一个点vi*作为G*的一个顶点; (2) 对G的一条边e, 若e是面 fi 与 fj 的公共边,则连接vi*与vj*,且连线穿过边e;若e是面 fi 中的割边,则以vi为顶点作环,且让它与e相交。 |
|
|
|
|
6.3 平面图的判定与涉及平面性的不变量
2度顶点内扩充 | 在图G的边上插入一个2度顶点,使一条边分成两条边,称将图在2度顶点内扩充; |
|
2度顶点内收缩 | 去掉一个图的2度顶点,使关联它们的两条边合并成一条边,称将图G在2度顶点内收缩 |
|
同胚 | 两个图G1与G2说是同胚的,如果G1与G2同构或者通过反复在2度顶点内扩充和收缩后能够变成一对同构的图。 |
|
基础简单图 | 给定图G, 去掉G中的环,用单边代替平行边而得到的图称为G的基础简单图。 |
|
图G的初等收缩/图的边收缩运算 | 设uv是简单图G的一条边。去掉该边,重合其端点,在删去由此产生的环和平行边。这一过程称为图G的初等收缩或图的边收缩运算。 |
|
G可收缩到H | 称G可收缩到H,是指对G通过一系列边收缩后可得到图H。 |
|
亏格 | 若通过加上k个环柄可将图G嵌入到球面,则k的最小数目,称为G的亏格,记为:γ(G)。 |
|
环柄 | 边交叉处建立的“立交桥”。通过它,让一条边经过 “桥下”,而另一条边经过“桥上”,从而把两条边在交叉处分开。 |
|
图的厚度 | 若图G的k个可平面子图的并等于G,则称k的最小值为G的厚度,记为 θ(G) |
|
G的糙度 | 图G中边不相交的不可平面子图的最多数目称为 G的糙度,记为:
|
|
G的叉数 | 将G画在平面上时相交的边对的最少数目称为G的 叉数,记为
|
|
6.4 平面性算法
二元关系"~" | 设H是G的一个子图,在E(G)-E(H)中定义一个二元关系“ ~”:
(1) e1与e2分别是W的始边和终边,且 (2) W的内点与H不能相交。 |
|
G关于子图H的一座桥 | 设B是E(G)-E(H)关于二元关系“ ~” 的等价类在G中的边导出子图,则称B是G关于子图H的一座桥。 |
|
附着顶点 | 桥与H的公共顶点称为桥B在H中的附着顶点。 |
|
G容许的 | 设H是图G的可平面子图,
是H的一种平面嵌入。若G也是可平面图,且存在G的一个平面嵌入
使得:
称 H的平面嵌入
是G容许的。 |
|
B在面 f 内可画入 / 不可画入 | 设B是G中子图H的任意一座桥,若B对H的所有附着顶点都位于
的某个面 f 的边界上,则称B在面 f 内可画入,否则,称B在面 f 内不可画入。 对于G的桥B,令:
|
|
|
|
|
第六章 平面图——普通题目
设G=(n, m)是平面图,则:
| 对G的任意一条边e, 如果e是某面割边,那么由面的次数定义,该边给G的总次数贡献2次;如果e不是割边,那么,它必然是两个面的公共边,因此,由面的次数定义,它也给总次数贡献2次。于是得证。 |
|
设G=(n, m)是连通平面图,ф是G的面数,则: n-m+Φ=2 | 情形1,如果G是树,那么m=n-1, ф=1。在这种情况下,容易验证,定理中的恒等式是成立的。 情形2,G不是树的连通平面图。 假设在这种情形下,欧拉恒等式不成立。则存在一个含有最少边数的连通平面图G, 使得它不满足欧拉恒等式。设这个最少边数连通平面图G=(n, m), 面数为ф,则: n-m+Φ≠2 因为G不是树,所以存在非割边e。显然,G-e是连通平面图,边数为m-1, 顶点数为n, 面数为ф-1。 由最少性假设,G-e满足欧拉等式: n-(m-1)+(Φ-1)=2 化简得:n-m+Φ=2 这是一个矛盾。 |
|
设G是具有ф个面k个连通分支的平面图,则: n-m+Φ=k+1 | 对第i (1≦i≦k)个分支来说,设顶点数为ni,边数为mi,面数为фi,由欧拉公式:
所以,
而
所以n-m+Φ=k+1 |
|
设G是具有n个点m条边ф个面的连通平面图,如果对G的每个面f ,有:deg (f) ≥ l ≥3,则:
| 一方面,由次数公式得:
另一方面,由欧拉公式得:
所以有:
整理得结论 |
|
设G=(n, m)是连通图,如果:
则G是非可平面图。 | 上条结论逆否命题,用于判断非平面图 |
|
求证:K3,3是非可平面图。 | 注意到,K3,3是偶图,不存在奇圈,所以,每个面的次数至少是4,即 l=4
而m=9,这样有:
所以,由推论2,K3,3是非平面图。 |
|
设G是具有n个点m条边ф个面的简单平面图,则:m≤3n-6 | 情形1,G连通。 因为G是简单图,所以每个面的次数至少为3,即l=3。于是,由推论2得:m≤3n-6 情形2,若G不连通。设G1,G2,…,Gk是连通分支。 一方面,由推论1:n-m+Φ=k+1 另一方面,由次数公式得:
所以得: m≤3n-3(k+1)<=3n-6 |
|
证明:K5是非可平面图。 | 证明:K5是简单图,m=10, n=5。3n-6=9。 得m>3n-6 |
|
设G是具有n个点m条边的简单平面图,则: δ≤5 | 证明:若不然,设δ≥6 由握手定理:
这与G是简单平面图矛盾。 |
|
一个连通平面图是2连通的,当且仅当它的每个面的边界是圈。 | “必要性”: 设G是2连通的平面图,因为环总是两个面的边界,且环面显然由圈围成。不失一般性,假设G没有环,那么G没有割边,也没有割点。所以,每个面的边界一定是一条闭迹。 设C是G的任意面的一个边界,我们证明,它一定为圈。 若不然,设C是G的某面的边界,但它不是圈。因C是一条闭迹且不是圈,因此,C中存在子圈。设该子圈是W1.因C是某面的边界,所以W1与C的关系可以表示为下图的形式:
容易知道:v为G的割点。矛盾! “充分性” 设平面图G的每个面的边界均为圈。此时删去G中任意一个点不破坏G的连通性,这表明G是2连通的。 |
|
推论6 若一个平面图是2连通的,则它的每条边恰在两个面的边界上。 | 略 |
|
定理4 G可球面嵌入当且仅当G可平面嵌入。 | 证明:我们用建立球极平面射影的方法给出证明。 将求面S放在一个平面P上,设切点为O,过O作垂直于P的直线,该直线与S相交于z。 作映射 f : S -{z}→ P。定义 f (x) = y, 使得x ,y , z三点共线。该映射称为球极平面射影。 通过f, 可以把嵌入球面的图映射为嵌入平面的图。反之亦然。 |
|
定理5 所有图均可嵌入R3中。 | 略 |
|
存在且只存在5种正多面体:它们是正四、六、八、十二、二十面体。 | 任取一个正ф面体,其顶点数、棱数分别是n和m。对应的一维骨架是一个每个面次数为l ,顶点度数为r的简单平面正则图G. 由次数公式得:
由握手定理得:
以上两等式中:l ≥3, r ≥3 由(1)与(2) 得:
将(3)代入欧拉公式得:
其中
于是得不等式组
不等式组(5)的正整数解恰有5组:
|
|
设G是极大平面图,则G必然连通;若G的阶数大于等于3,则G无割边。 | (1) 先证明G连通。 若不然,G至少两个连通分支。设G1与G2是G的任意两个连通分支。把G1画在G2的外部面上,并在G1,G2上分别取一点u与v.连接u与v得到一个新平面图G*。但这与G是极大平面图相矛盾。 (2) 当G的阶数n≥3时,我们证明G中没有割边。 若不然,设G中有割边e = uv,则G-uv不连通,恰有两个连通分支G1与G2。
设u在G1中,而v在G2中。由于n≥3, 所以,至少有一个分支包含两个以上的顶点。设G2至少含有两个顶点。又设G1中含有点u的面是 f , 将G2画在 f 内。
由于G是单图,所以,在G2的外部面上存在不等于点v的点t。现在,在G中连接点u与t得新平面图G*,它比G多一条边。这与G的极大性相矛盾。 |
|
设G是至少有3个顶点的平面图,则G是极大平面图,当且仅当G的每个面的次数是3且为单图。 (“极大平面图的三角形特征”,即每个面的边界是三角形。) | 证明:“必要性” 由引理知,G是单图、G无割边。于是G的每个面的次数至少是3。假设G中某个面 f 的次数大于等于4。记 f 的边界是v1v2v3v4…vk。如下图所示:
如果v1与v3不邻接,则连接v1v3,没有破坏G的平面性,这与G是极大平面图矛盾。所以v1v3必须邻接,但必须在 f 外连线;同理v2与v4也必须在 f 外连线。但边v1v3与边v2v4在 f 外交叉,与G是平面图矛盾! 所以,G的每个面次数一定是3. 定理的充分性是显然的。 |
|
设G是n个点,m条边和ф个面的极大平面图,且n≥3.则:(1) m=3n-6; (2) ф=2n-4. | 因为G是极大平面图,所以,每个面的次数为3.由次数公式:
由欧拉公式:
所以得:
所以得:m=3n-6 又m=n+Φ-2,所以 Φ=2n-4 |
|
顶点数相同的极大平面图并不唯一。 | 正确!例如:
|
|
设G是一个连通简单外可平面图,则在G中有一个度数至多是2的顶点。 | 略 |
|
设G是一个有n (n≥3)个点,且所有点均在外部面上的极大外平面图,则G有n-2个内部面。 | 证明:对G的阶数作数学归纳。 当n=3时,G是三角形,显然只有一个内部面;设当n=k时,结论成立。当n=k+1时,首先,注意到G必有一个2度顶点u在G的外部面上。(这可以由上面引理得到)考虑G1=G-v。由归纳假设,G1有k-2个内部面。这样G有k-1个内部面。于是定理2得证。 |
|
定理3 设G是一个有n (n≥3)个点,且所有点均在外部面上的外平面图,则G是极大外平面图,当且仅当其外部面的边界是圈,内部面是三角形。 (这是极大外平面图的典型特征。) | 证明:先证明必要性。 (1) 证明G的边界是圈。 容易知道:G的外部面边界一定为闭迹,否则,G不能为极大外平面图。设W=v1v2…vnv1是G的外部面边界。若W不是圈,则存在i与j,使vi=vj=v.此时,G可以示意如下:
vi-1与vi+1不能邻接。否则W不能构成G的外部面边界。这样,我们连接vi-1与vi+1:
得到一个新外平面图。这与G的极大性矛盾。 (2) 证明G的内部面是三角形。 首先,注意到,G的内部面必须是圈。因为,G的外部面的边界是生成圈,所以G是2连通的,所以,G的每个面的边界必是圈。 其次,设C是G中任意一个内部面的边界。如果C的长度大于等于4,则C中一定存在不邻接顶点,连接这两点得到一个新平面图,这与G的极大性矛盾。又由于G是单图,所以C的长度只能为3. 下面证明充分性。 设G是一个外平面图,内部面是三角形,外部面是圈W. 如果G不是极大外平面图,那么存在不邻接顶点u与v,使得G+uv是外平面图。但是,G+uv不能是外平面图。因为,若边uv经过W的内部,则它要与G的其它边相交;若uv经过W的外部,导致所有点不能在G的同一个面上。所以,G是极大外平面图。 |
|
每个至少有7个顶点的外可平面图的补图不是外可平面图,且7是这个数目的最小者。 | 证明:对于n=7的极大外可平面图来说,只有4个。直接验证:它们的补图均不是外可平面的。 而当n=6时,我们可以找到一个外可平面图G(见下图),使得其补图是外可平面图。 |
|
定理5 平面图G的对偶图必然连通 | 证明:在G*中任意取两点vi*与vj*。我们证明该两点连通即可! 用一条曲线 l 把vi*和vj*连接起来,且 l 不与G*的任意顶点相交。显然,曲线 l 从vi*到vj*经过的面边序列,对应从vi*到vj*的点边序列,该点边序列就是该两点在G*中的通路。 |
|
G是平面图,则
当且仅当G是连通的。 | 证明:“必要性” 由于G是平面图,由定理5,G*是连通的。而由G*是平面图,再由定理5,(G*)*是连通的。 所以,由
G是连通的。 “充分性” 由对偶图的定义知,平面图G与其对偶图G*嵌入在同一平面上,当G连通时,容易知道:G*的无界面 f **中仅含G的唯一顶点v,而除v外,G中其它顶点u均与G*的有限面形成一一对应,于是,G中顶点和G**顶点在这种自然对应方式下一一对应,且对应顶点间邻接关系保持不变,故:
|
|
判断 同构的平面图可以有不同构的对偶图。 | 正确! 例如,下面的两个图:
其对偶图不同构 |
|
证明 B是平面图G的极小边割集,当且仅当
是G*的圈。 | 必要性 对B的边数作数学归纳。 当B的边数n=1时,B中边是割边。显然,在G*中对应环。所以,结论成立。 设对B的边数n<k 时,结论成立。考虑n=k的情形。 设c1 ∈B, 于是B-c1是G-c1=G1的一个极小边割集。由归纳假设:
是G1*的一个圈。且圈C1*上的顶点对应于G1中的面f, f 的边界上有极小边割集B-e1的边。 现在,把e1加入到G1中,恢复G。由于G是平面图,其作用相当于圈C1*上的一个顶点对应于G1中的一个平面区域 f, 被e1划分成两个顶点f1*与f2*,并在其间连以e1所对应的边e1*。 所以,B对应在G*中的C*仍然是一个圈。由归纳法,结论得到证明。 充分性: G*中的一个圈,对应于G中的边的集合B显然是G中的一个边割集。 若该割集不是极小边割集,则它是G中极小边割集之和。而由必要性知道:每个极小边割集对应G*的一个圈,于是推出B在G*中对应的边集合是圈之并。但这与假设矛盾。 |
|
证明 欧拉平面图的对偶图是偶图。 | 因欧拉图的任意边割集均有偶数条边。于是由(1),G*中不含奇圈。所以G*是偶图。 |
|
设T是连通平面图G的生成树,
| 证明:T*=G*[E*]是G*中的生成树。(习题第27题) 证明:情形1,如果G是树。在这种情况下,E* = Φ.则T*是平凡图,而G*的生成树也是平凡图,所以,结论成立; 情形2,如果G不是树。 因G的每个面必然含有边e不属于E(T),即G*的每个顶点必然和E*中的某边关联,于是T*必然是G*的生成子图。下面证明:T*中没有圈。若T*中有圈。则由例2知:T的余树中含有G的极小边割集。但我们又可以证明:如果T是连通图G的生成树,那么,T的余树不含G的极小边割集。这样,T*不能含G*的圈。又因在G中,每去掉T的余树中的一条边,G的面减少一个,当T的余树中的边全去掉时,G变成一颗树T. 于是,有:
所以,T*是G*的生成树。 |
|
图G是可平面的,当且仅当它不含K5和K3,3同胚的子图。 库拉托斯基定理 | 略
|
|
图G是可平面的,当且仅当它的基础简单图是可平面的 | 由平面图的定义,该命题显然成立。 |
|
图G是可平面图当且仅当G的每个块是可平面图。 | 必要性显然。下面证明充分性。 不失一般性,假设G连通。我们对G的块数n作数学归纳证明。 当n=1时,由条件,结论显然成立;设当n<k 时,若G的每个块是可平面的,有G是可平面的。下面考虑n=k时的情形。设点v是G的割点,则按照v,G可以分成两个边不重子图G1与G2, 即G=G1∪G2,且G1∩G2={v}。
按归纳假设,G1与G2都是可平面图。取G1与G2的平面嵌入满足点v都在外部面边界上,则把它们在点v处对接后,将得到G的平面嵌入。即证G是可平面图。 |
|
简单图G是可平面图当且仅当它不含有可收缩到K5或K3,3的子图。 | 略 求证彼得森图是非可平面图。
|
|
至少有9个顶点的简单可平面图的补图是不可平面的,而9是这个数目中的最小的一个。 | 尚无简洁证明 |
|
设G是一个简单图,若顶点数n≥11,则G与G的补图中,至少有一个是不可平面图 (要求用推理方法). | 设G是一个n阶可平面图,则:
所以:
考虑:
令:
则:
所以, 当n≥6.5时,f(n)单调上升。而当n=11时:
所以, 当n≥11时,有:
即证明了简单可平面图G的补图是非可平面图。 |
|
设Gi是一个有ni个点,mi条边的图,i=1,2。证明:若G1与G2同胚,则:
| 证明:设G1经过p1次2度顶点扩充,p2次2度顶点收缩得到H1, G2经过q1次2度顶点扩充,q2次2度顶点收缩得到H2, 使得:
又设H1与H2的顶点数分别为n1*和n2*,边数分别为m1*与m2*。那么:
所以:
而由
得
所以:
|
|
对于一个亏格为γ,有n个顶点,m条边和ф个面的多面体,有
| 略 |
|
设G是一个有n个点m条边,亏格为γ的连通图,则:
| 证明 (3): 因为G的每个面是三角形,所以每条边是两个面的公共边,得:3ф=2m。于是由定理4得:
对于完全图的亏格曾经是一个长期的,有趣的,困难的和成功的努力。1890年希伍德提出如下猜想:
|
|
定理5 设m, n是正整数,则:
| (1)若
(2)
(3) 对任意的单图G=(n, m),有:
| 完全图的糙度由下式给出:
(3n+1≥19并且3n+1≠9r+7,其中r为面数);
|
设
是G容许的,则对于H的每座桥B:
|
该定理实际上给出了一个图是可平面图的一个必要条件。这个必要条件表明:如果存在G的一个可平面子图H,使得对于某桥B,有
那么,G是非可平面的。 |
|
平面性算法 |
|
|
|
|
|
第六章 平面图——易错题目
定理 一个连通平面图是2连通的,当且仅当它的每个面的边界是圈。 | 证明:“必要性”: 设G是2连通的平面图,因为环总是两个面的边界,且环面显然由圈围成。不失一般性,假设G没有环,那么G没有割边,也没有割点。所以,每个面的边界一定是一条闭迹。 设C是G的任意面的一个边界,我们证明,它一定为圈。 若不然,设C是G的某面的边界,但它不是圈。 因C是一条闭迹且不是圈,因此,C中存在子圈。设该子圈是W1.因C是某面的边界,所以W1与C的关系可以表示为下图的形式:
容易知道:v为G的割点。矛盾! “充分性” 设平面图G的每个面的边界均为圈。此时删去G中任意一个点不破坏G的连通性,这表明G是2连通的。 |
|
若一个平面图是2连通的,则它的每条边恰在两个面的边界上。 | 正确! |
|
若一个平面图是2连通的,则它没有割边也没有割点! | 正确! |
|
存在一种方法,总可以把平面图的任意一个内部面转化为外部面。 | 正确!原因未知! |
|
第七章 图的着色——基础概念
7.1 图的边着色
正常边着色 | 设G是图,对G的边进行染色,若相邻边染不同颜色,则称对G进行正常边着色; |
|
k边可着色的 | 如果能用k种颜色对图G进行正常边着色,称G是k边可着色的。 |
|
G的边色数 | 设G是图,对G进行正常边着色需要的最少颜色数,称为G的边色数,记为:
|
|
色组 | 在对G正常边着色时,着相同颜色的边集称为该正常着色的一个色组。 |
|
点u缺i色 | 设п是G的一种正常边着色,若点u关联的边的着色没有用到色i,则称点u缺i色。 |
|
7.2 图的顶点着色
*
正常顶点着色 | 设G是一个图,对G的每个顶点着色,使得相邻顶点着不同颜色,称为对G的正常顶点着色; |
|
G可k正常顶点着色 | 如果用k种颜色可以对G进行正常顶点着色,称G可k正常顶点着色; |
|
点色数 | 对图G正常顶点着色需要的最少颜色数,称为图G的点色数。
|
|
G的次大度 | 设G是至少有一条边的简单图,定义:
其中N(u)为G中点u的邻域。称Δ2(G)为G的次大度。 注:由次大度的定义知:Δ2(G)≦Δ(G) |
|
7.3 与色数有关的几类图+完美图(2020不考)
临界图 | 若对图G的任意真子图H,都有
则称G是临界图。 |
|
k临界图 | 点色数为k的临界图称为k临界图。 |
|
临界图有如下性质 (1) k色图均有k临界子图; (2) 每个临界图均为简单连通图; (3) 若G是k临界图,则δ≥k-1。 | 证明: (1)是显然的。 (2) 因为删掉环或平行边中的一条边并不破坏原有的顶点正常着色,所以每个临界图是单图;又因为删掉色数较小的分支,剩下部分的图的色数和原图色数相等,所以,临界图必须是连通图。 (3) 若不然,δ< k-1。 设d(v)=δ。因为G是k临界图,所以G-v是k-1可正常顶点着色的。设п是G-v的k-1正常顶点着色方案,显然,它可以扩充为G的k-1正常点着色方案。这与G是k临界图相矛盾。 |
|
求证:临界图没有割点。 | 证明:设G是k临界图。如果G有割点v, 设G1,G2,…,Gr是G-v的分支。又设第i个分支顶点集为Vi (1≦i≦r)。 设Hi=G[Vi∪{v}], (1≦i≦r)。则Hi是k-1可正常点着色的,现对每个Hi进行k-1正常点着色,且v都分配同一种颜色,那么,将着色后的Hi合在一起,得到G的k-1正常点着色方案,这与G是k色图矛盾。所以临界图没有割点。 |
|
求证:仅有的1临界图是k1;仅有的2临界图是K2;仅有的3临界图奇圈。 | 证明:由于1色图是空图,所以1临界图只能是K1;2色图是偶图,所以,2临界图只能是K2; 3色图必然含有奇圈,而奇圈的色数是3,所以,3临界图只能是奇圈。 |
|
唯一可着色图 | 设简单标定图G的点色数是k, 如果在任意的k正常点着色方案下,导出的顶点集合划分唯一,称G是唯一k可着色图,简称唯一可着色图。 |
|
不含三角形的k色图 | 若图G的点色数是k,且G中不含有三角形,称G是一个不含三角形的k色图。 |
|
由一个不含三角形的k色图Gk构造一个不含三角形的k+1色图Gk+1的方法 | 设Gk的顶点是u1,u2,…,un, 添加点v1,v2,…vn和点v。将vi与ui的所有邻点及v相连,1≦i≦n。如此得到的图就是一个不含三角形的k+1色图。 |
|
G的一个团 | 单 图G的团:若单图G的一个顶点子集S在G中的导出子图是完全图,则称S是G的一个团; |
|
单图G的团数 | 单图G的最大团包含的顶点数称为G的团数,记为c l (G) ,即:
|
|
完美图 | 设G是一个图。若对G的每个点导出子图H,均有
称G为完美图。 例如Kn, 偶图是完美图,而不含三角形但含奇圈的图不是完美图。 |
|
7.4 色多项式
*
色计数 | 所谓色计数,就是给定标定图G和颜色数k,求出正常顶点着色的方式数。方式数用Pk(G)表示。 |
|
色多项式 | 可以证明:Pk(G)是k的多项式,称为图G的色多项式。
1) 若
则Pk(G)=0 ; (2) 若G为空图,则Pk(G)=kn。 (3) Pk(Kn)=k(k-1)…(k-n+1)。 |
|
理想子图 | 设H是图G的生成子图。若H的每个分支均为完全图,则称H是G的一个理想子图。 |
|
N r (G) | 用N r (G)表示G的具有 r 个分支的理想子图的个数。 |
|
理想子图法的色多项式公式 |
|
|
伴随多项式 | 设G是单图,令Ni(G)=ri , [k]i=xi 。称
为图G的伴随多项式。 于是,求Pk(G)就是要求出
的伴随多项式。 |
|
|
|
|
|
|
|
|
|
|
第七章 图的着色——普通题目
| 证明:设
又设Δ=n。设颜色集合为{0,1,2,…,n-1},п是Km,n的一种n着色方案,满足:
我们证明:上面的着色是正常边着色。 对K m, n中任意的两条邻接边xiyj和xiyk。若
则:i+ j ( mod n)=i +k ( mod n),得到j=k,矛盾! 所以,上面着色是正常作色。所以:
又显然
故得证 |
|
用最少的颜色数对K3,4正常边着色。 | 4种颜色 |
|
若G是偶图,则
| 证明:我们对G的边数m作数学归纳。 当m=1时,Δ=1,有
设对于小于m条边的偶图来说命题成立。 设G是具有m条边的偶图。 取uv∈ E(G), 考虑G1=G-uv,由归纳假设有:
这说明,G1存在一种Δ(G)边着色方案п。对于该着色方案,因为uv未着色,所以点u与v均至少缺少一种色。 情形1 如果u与v均缺同一种色i, 则在G1+uv中给uv着色i, 而G1其它边,按п方案着色。这样得到G的Δ着色方案,所以:
情形2 如果u缺色i, 而v缺色j,但不缺色i。 设H (i, j) 表示G1中由i色边与j色边导出的子图。显然,该图每个分支是i色边和j色边交替出现的路或圈。 对于H(i, j)中含点v的分支来说,因v缺色j, 但不缺色i, 所以,在H(i, j)中,点v的度数为1。这说明,H(i ,j)中含v的分支是一条路P。 进一步地,我们可以说明,上面的路P不含点u。 因为,如果P含有点u, 那么P必然是一条长度为偶数的路,这样,P+uv是G中的奇圈,这与G是偶图矛盾! 既然P不含点u, 所以我们可以交换P中着色,而不破坏G1的正常边着色。但交换着色后,u与v均缺色i, 于是由情形1,可以得到G的Δ正常边着色,即证明:
|
|
设G是简单图,x与y1是G中不相邻的两个顶点,п是G的一个正常k边着色。若对该着色п,x,y1以及与x相邻点均至少缺少一种颜色,则G+xy1是k边可着色的。 | 略 |
|
(维津定理,1964) 若G是单图,则:
| 只需要证明
对G的边数m作数学归纳证明。 当m=1时,Δ=1,
设当边数少于m时,结论成立。下面考虑边数为m≥2的单图G。 设xy ∈E(G),令G1=G-xy。由归纳假设有:
于是,存在G1的Δ(G)+1正常边作色п。显然G1的每个顶点都至少缺少一种颜色。根据引理知G1+xy是Δ(G)+1可着色的。即证明:
|
|
设G是单图且Δ(G)>0。若G中只有一个最大度点或恰有两个相邻的最大度点,则:
| (1) 若单图G恰有一个最大度点u,取u的一个邻点v,作G1=G-uv。 那么,Δ(G1)=Δ(G)-1。由维津定理:
于是G1是可Δ(G) 正常边着色的,因为G1的每个顶点都至少缺少一种颜色,所以由引理:G1+uv=G是可Δ(G) 正常边着色的,即:
(2) 若单图G恰有2个邻接的最大度点u与v。设G1=G-uv。 那么,Δ(G1)=Δ(G)-1。由维津定理:
于是G1是可Δ(G) 正常边着色的,因为G1的每个顶点都至少缺少一种颜色,所以由引理:G1+uv=G是可Δ(G) 正常边着色的,即:
|
|
设G是单图。若点数n=2k+1且边数m>kΔ,则:
| 若不然,由维津定理
设п是G的Δ(G)正常边着色方案,对于G的每个色组来说,包含的边数至多(n-1)/2=k。这样
与条件矛盾。 |
|
设G是奇数阶Δ正则单图,若Δ>0,则:
| 设n=2k+1。因G是Δ正则单图,且Δ>0,所以:
由定理5
|
|
设n=2k+1,k>0。求
和
| Cn:阶数为n的圈!!!
|
|
求出彼得森图的边色数。 | 一方面,彼得森图中去掉任意一个1因子后,剩下两个5点圈,所以,不能进行1因子分解,所以:
另一方面:通过验证,G可以4正常作色。所以:
|
|
(1) 设G=(X, Y)是一个最大度为Δ的偶图,求证,G是某个Δ正则偶图 G*的子图。 (2) 用(1) 证明:偶图的边色数等于其最大度。 | 证明 (1) 按如下方式构造G*。 如果G不是Δ正则偶图,先将G按下图所示方式构造成为G1
G (1)与G (2)分别是G的拷贝。 红色 边表示xi与xi(yi与yi)之间的一条连线,要求是d(xi)<Δ(d(yi)<Δ),这样得到的新偶图就是G1。 如果G1是Δ正则偶图,则G*=G1 否则,在G1的基础上,重复上面的过程,可得到G2,这样不断下去,最终得到包含G的Δ正则偶图G*。 (2) 由(1) 对于任意最大度为Δ的偶图G,均存在G的Δ正则母图G*。又由于正则偶图存在1因子分解,所以,G*可以划分为Δ个1因子,从而其边色数为Δ。这样G的边色数也为Δ。 |
|
证明:每个哈密尔顿3正则图都有泰特(Tait)着色。3正则图的正常3边着色称为泰特着色。 | 证明:设G是3正则H图,C是G的一个H圈,则C是偶圈,所以C是2可正常边着色的。因G-C是G的一个1因子,所以,可1正常边着色。因此,G是可以3边正常着色的,即G有泰特着色。 |
|
(Vizing定理)设无环图G中边的最大重数为 µ,则 |
|
|
对任意的图G,有:
| 证明:我们对顶点数作数学归纳证明。 当n=1时,结论显然成立。 设对顶点数少于n的图来说,定理结论成立。考虑一般的n阶图G。 任取v ∈V(G), 令G1=G-v, 由归纳假设:
设п是G1的一种Δ(G)+1正常点着色方案,因为v的邻点在п下至多用去Δ(G)种色,所以给v染上其邻点没有用过的色,就把п扩充成了G的Δ(G)+1着色方案。 |
|
G的Δ(G)+1正常点着色算法 | 设G=(V, E), V={v1,v2,…,vn},色集合C={1,2,…,Δ+1},着色方案为п。 (1) 令п(v1)=1, i=1; (2) 若i=n,则停止;否则令:
设k为C-C(vi+1)中的最小整数,令
(3) 令i=i+1,转(2)。 |
|
(布鲁克斯,1941) 若G是连通的单图,并且它既不是奇圈,又不是完全图,则:
| 证明:不失一般性,我们可以假设G是正则的,2连通的,最大度Δ≥3的简单图。原因如下: (1) 容易证明:若G是非正则连通单图,最大度是Δ,则
事实上,我们可以对G的顶点数作数学归纳证明: |
|
定理3 设G是非空简单图,则:
| 略 |
|
推论:设G是非空简单图,若G中最大度点互不邻接,则有:
| 略 |
|
定理4 (希伍德) 每个平面图是5可着色的。 根据平面图和其对偶图的关系,上面定理等价于 每个平面图是5可顶点正常着色的。 | 证明:我们对图的顶点作数学归纳证明。 当n=1时,结论显然。 设n=k时,结论成立。考虑n=k+1的连通平面图G。 因G是连通平面图,所以δ(G)≦5 设d(u)=δ(G)≦5。 令G1=G – u。由归纳假设,G1是5可顶点正常着色的。设п是G1的5着色方案。 (1) 如果d(u)=δ(G)<5, 显然п可以扩充为G的5正常顶点着色; (2) 如果d(u)=δ(G) = 5, 分两种情况讨论。 情形1 在п下,如果u的邻接点中,至少有两个顶点着相同颜色,则容易知道,п可以扩充为G的5正常顶点着色;情形2 在п下,设u的邻接点中,5个顶点着了5种不同颜色。 不失一般性,设п(xi)=i (1≦i≦5)。 设H (i, j)表示着i和j色的点在G1中的点导出子图。 如果x1与x3属于H(1, 3) 的不同分支。则通过交换含x1的分支中的着色顺序,可得到G1的新正常点着色方案,使x1与x3着同色,于是由情形1,可以得到G的5正常顶点着色方案;
设x1与x3属于H(1, 3) 的相同分支。在上面假设下,x2与x4必属于H(2, 4) 的不同分支。否则,将会得到H(1, 3) 与H(2, 4) 的交叉点。因此,п可以扩充为G的5正常顶点着色。 |
|
证明 每个k色图至少有k个度不小于k-1的顶点。 | 因G是k色图,所以,它包含k临界子图G1,所以有:δ(G1)≥k-1,即G1中至少有k个顶点,其度数不小于k-1。所以,G中至少有k个度不小于k-1的顶点。 |
|
利用上面推论证明:对任意图G,有:
| 设G的点色数
由推论,G中至少有
个顶点,其度数不小于
所以,
即
|
|
定理2(哈拉里,1968) 设G是唯一k可着色图,k≥2, 则: (1) δ≥k-1; (2) 在G的任意一种k着色中,G的任意两个色组的并的导出子图是连通的。 | 证明: (1) 若不然,设δ < k-1, 令d(u) =δ,则
设п是G的k着色方案,因为
所以,在п下,至少有一种颜色,点u及其邻域均没有用到,设该色为m,改变u的颜色为m,其余点的着色不变,这样得到G的k着色方案п1.显然,п与п1导出的G的顶点划分不同,这与G是唯一可着色图矛盾。 (2) 若不然,则存在G的k着色方案п和G的两个色组C1与C2,使得H=G[C1∪C2]不连通。设H1与H2是H的两个分支。 因为G是唯一可着色图,所以,对任意点u和其邻域N(u), 它们在п下,必然用完了k种颜色,否则,由(1)的证明,得到G是非唯一可着色图。 这样,H1与H2中同时含有C1和C2中的顶点。 如果交换C1∩V(H1)与C2∩V(H1)中顶点颜色,得到G的k着色п1,显然,п与п1的色划分是不同的。这与G的着色唯一性矛盾。 如果交换C1∩V(H1)与C2∩V(H1)中顶点颜色,得到G的k着色п1,显然,п与п1的色划分是不同的。这与G的着色唯一性矛盾。 |
|
(夏特朗)每个唯一k (k≥2)可着色图是(k-1)连通的。 | 证明:设G是唯一k可着色图(k≥2)。 情形1,如果G是完全图,则G=Kk,显然G是k-1连通的。 情形2,如果G是非完全图,假若G不是(k-1)连通的,那么其连通度k(G)≦k-2。于是G中存在点集S,|S|=k-2, 使得G-S不连通。 设п是G的k着色方案。在该方案下,至少有两种颜色c1与c2,S中的顶点都没有使用。 而由定理2的(2), 着c1与c2色的点导出子图必连通。所以,着c1与c2色的顶点在G-S中的同一个分支中,设该分支为G1. 在G-S中取一个不在G1中的点u,将其染上c1色,这样得到G的另一个k着色方案。 显然,两种着色方案导出的色划分不同,这与条件矛盾。 |
|
推论:设G是唯一n(n≥2)可着色图,п是任意一种n着色方案,则由п的任意k个色组导出的子图是(k-1)连通的。 : (1) 唯一1可着色图是零图; (2) 唯一2可着色图是偶图; | 证明:显然,任意k个色组导出子图是唯一k可着色图,由定理3得到推论结论。 |
|
每个唯一4可着色可平面图都是极大可平面图。 | 证明:只需证明:m=3n-6即可。 一方面:G是可平面图,有:m≦3n-6; 另一方面:设G是唯一4可着色的可平面图,п是一种4着色方案,色组记为Vi(1≦i≦4). 因为i≠j时,G[Vi∪Vj] 是连通的,所以:
于是:
所以,m=3n-6,即G是极大可平面图。 |
|
色多项式递推计数法 定理1 设G为简单图,则对任意
| 证明:设e=uv。则对G-e的着色方式数可以分为两部分: (1) u与v着不同颜色。此时,等于G的着色方式数; (2) u与v着同色。此时,等于G·e的着色方式数; 所以,得:
|
|
推论:设G是单图,e=uv是G的一条边,且d(u)=1,则:
| 证明:因为G是单图,e=uv, d(u)=1,所以G·e = G-u。 另一方面,Pk(G-e)=kPk(G-u) 所以,
|
|
设q r(G)表示将单图G的顶点集合V划分为 r 个不同色组的色划分个数,则:
| 一方面,设G的任一r色划分为:{V1,V2,…,Vr}。于是,对于1≦i≦r,
是
的完全子图 因为Vi∩Vj=Φ(i≠j),所以
是
的理想子图。 这说明:G的任一r色划分必然对应
的一个理想子图。容易知道,这种对应是唯一的; 另一方面,对于
的任一具有r个分支的理想子图,显然它唯一对应G中一个r色组。 所以,我们得到:
|
|
理想子图法求Pk(G)的步骤 | (1) 画出G的补图
(2) 求出关于补图的
(3) 写出关于补图的伴随多项式
(4) 将
代入伴随多项式中得到Pk(G)。 |
|
改进: 若G有t个分支H1,H2,…Ht,且Hi的伴随多项式为h (Hi, x), i=1,2,…,t, 则:
| 该定理说明,在求
的伴随多项式时,可以分别求出它的每个分支的伴随多项式,然后将它们作乘积。 如:
|
|
定理4 n阶单图G的色多项式Pk(G)是常数项为0的首1整系数多项式,且各项系数符号正负相间。 | 证明:对G的边数进行数学归纳证明。 当m=0时,Pk(G)=kn, 命题结论成立。 设m=k时,命题结论成立。 考虑m=k+1的单图G。(m≥1) 取单图G的任意一条边e, 考虑G-e与G·e。 对于G-e来说,由归纳假设,可设其色多项式为:
同样,可设G·e的色多项式为:
由色多项式递推公式得:
|
|
(1) 用递推公式证明:设G=(n ,m)是单图,则在其色多项式Pk(G)中kn-1的系数是-m。 (2) 不存在以k4-3k3+3k2为其色多项式的单图。 注: (2) 同构的图具有相同的色多项式,但逆不真。 | 证明: (1) 采用对边数进行数学归纳证明。 当m=1时,Pk(G)= Pk(G-e)- Pk(G·e)= kn-kn-1.显然,结论成立。 设命题对少于m条边的n阶单图成立。考虑单图G=(n ,m). 由递推公式: Pk(G)= Pk(G-e)- Pk(G·e). 由假设可令: Pk(G-e)=kn+a1kn-1+…+an-1k ,且a1=-m+1; Pk(G·e)=kn-1+b1kn-2+…+bn-2k ,且b1=-m+1; 所以: Pk(G)= kn+(a1+1)kn-1+(a2+b1)kn-2+…+ (an-1+bn-2)k 所以,a1+1=-m。 (2) 不存在以k4-3k3+3k2为其色多项式的单图。 事实上,一方面,如果它是某单图的色多项式,则由多项式本身可以得到点色数为1; 另一方面,由(1)和多项式本身,如果多项式是某单图的色多项式,则m(G)=3.于是点色数至少为2. 上面推导导出了矛盾! |
|
第七章 图的着色——易错题目
Kn是唯一可着色图? | 唯一可着色图的概念: 设简单标定图G的点色数是k, 如果在任意的k正常点着色方案下,导出的顶点集合划分唯一,称G是唯一k可着色图,简称唯一可着色图。 相关结论: 定理2(哈拉里,1968) 设G是唯一k可着色图,k≥2, 则: (1) δ≥k-1; (2) 在G的任意一种k着色中,G的任意两个色组的并的导出子图是连通的。 定理3 (夏特朗)每个唯一k (k≥2)可着色图是(k-1)连通的。 (1) 唯一1可着色图是零图; (2) 唯一2可着色图是偶图; 设G是唯一n(n≥2)可着色图,п是任意一种n着色方案,则由п的任意k个色组导出的子图是(k-1)连通的。 每个唯一4可着色可平面图都是极大可平面图。 |
|
第九章与第八章 有向图和拉姆齐问题(独立集、覆盖、临界图、拉姆齐数)——基础概念
9 有向图
平行边 | 在一个有向图D中,具有相同起点和终点的边称为平行边。 |
|
有向图两点间的重数
| 在一个有向图D中,具有相同起点和终点的边称为平行边。两点间平行边的条数称为该两点间的重数。 |
|
简单有向图 | 在一个有向图D中,如果没有有向环和平行边,则称该图为简单有向图。 |
|
基础图 | 设D是有向图,去掉D中边的方向后得到的无向图G,称为D的基础图。 |
|
定向图 | 又若G是无向图,给G的每条边加上方向后得到的有向图D称为G的一个定向图。 |
|
出度 | 设D是有向图,v是D中顶点。以v为始点的边的条数称为点v的出度,以v为端点的一个自环算1度。点v的出度记为d+(v); |
|
入度 | 以v为终点的边的条数称为点v的入度,以v为端点的一个自环算1度。点v的入度记为d-(v); |
|
点v的度 | 点v的出度与入度之和称为点v的度,记为d(v)。 |
|
有向图邻接矩阵 | 称A(D)=(aij) n×n是D的邻接矩阵,其中aij是vi为始点,vj为终点的边的条数,1≦i≦n,1≦j≦n。 |
|
关联矩阵 | 若D无环。称矩阵M=(mij)n×m是D的关联矩阵,其中
|
|
u可达v | 定义7 设D=(V, E)是有向图,u与v是D中两个顶点。 1) 若D中存在一条(u,v)路,则称u可达v,记为u→v。规定u →u。 |
|
单向连通 | 2) 若D中存在一条(u,v)路或(v, u)路,则称u与v是单向连通的。 |
|
强连通/双向连通 | 若D中存在一条(u,v)路和一条(v, u)路,则称u与v是双向连通的或强连通的。 |
|
弱连通图 | 定义8 设D=(V, E)是有向图。 1) 若D的基础图是连通的,称D是弱连通图; |
|
单向连通图 | 2) 若D的中任意两点是单向连通的,称D是单向连通图; |
|
强连通图 | 3) 若D的中任意两点是双向连通的,称D是强连通图; |
|
强连通分支 | 设D`是有向图D=(V, E)的一个子图。如果D`是强连通的(单向连通的、弱连通的),且D中不存在真包含D`的子图是强连通的(单向连通的、弱连通的),则称D`是D的一个强连通分支(单向连通分支、弱连通分支)。 |
|
8 拉姆齐数简介
点独立集 | 设G=(V ,E)是一个图。V的一个顶点子集V1称为G的一个点独立集,如果V1中的顶点互不邻接; |
|
最大独立集 | G的一个包含顶点数最多的独立集称为G的最大独立集。 |
|
点独立数α(G) | G的一个包含顶点数最多的独立集称为G的最大独立集。最大独立集包含的顶点数,称为G的点独立数,记为α(G)。 |
|
点覆盖 | 设G=(V ,E)是一个图。V的一个顶点子集K称为G的一个点覆盖,如果E中的每条边至少有一个端点在K中。 |
|
最小点覆盖 | G的一个包含顶点数最少的点覆盖称为G的最小点覆盖。 |
|
点覆盖数β(G) | G的一个包含顶点数最少的点覆盖称为G的最小点覆盖。最小点覆盖包含的顶点数,称为G的点覆盖数,记为β(G)。 |
|
加莱恒等式 | 对任意不含孤立点的n阶图G,有: α(G)+ β(G)= n |
|
边独立集 | 设G=(V ,E)是一个图。E的一个边子集E1称为G的一个边独立集,如果E1中的边互不邻接; |
|
最大边独立集 | G的一个包含边数最多的边独立集称为G的最大边独立集。 |
|
边独立数 | 最大边独立集包含的边数,称为G的边独立数,记为α‵(G) 。 |
|
边覆盖 | 定义4 设G=(V ,E)是一个图。E的一个边子集 L 称为G的一个边覆盖,如果G中的每个顶点均是L中某条边的端点。 |
|
最小边覆盖 | G的一个包含边数最少的边覆盖称为G的最小边覆盖。 |
|
边覆盖数β‵(G) | G的一个包含边数最少的边覆盖称为G的最小边覆盖。最小边覆盖包含的边数,称为G的边覆盖数,记为β‵(G) 。 |
|
加莱恒等式 | 对任意不含孤立点的n阶单图G,有: α‵(G)+ β‵(G)= n |
|
β临界点 β临界边 | 设G=(V ,E)是一个图。v是G的一个顶点,e是G的一条边。若 β(G-v) < β(G) ,称v是G的β临界点;若β(G-e) < β(G) ,称e是G的β临界边。 |
|
β 点临界图 β 边临界图 | 设G=(V ,E)是一个图。若G的每个顶点是G的β临界点,称该图是β 点临界图;若G的每条边均是G的β临界边,称该图是β 边临界图。 β 边临界图一定是β 点临界图,反之不一定! |
|
(m, n)拉姆齐数 r(m, n) | 设m和n是两个正整数,如果存在最小的r(m ,n)阶的图G,使得G中或者有Km或者有n个顶点的独立集,则称正整数r(m, n)为(m, n)拉姆齐数。 |
|
第九章与第八章 有向图和拉姆齐问题(独立集、覆盖、临界图、拉姆齐数)——普通题目
一个简单图有多少个定向图? | 因为每条边有2种定向方式,所以共有2 m(G)种定向。 |
|
求证:G存在一个定向图D,使得对
| 不失一般性,设G是连通图。G中奇度顶点个数必然为偶数个,将偶数个奇数度顶点配对,然后在每一对配对顶点间连一条边得到欧拉图G1。在G1中用Fluery算法求出G的一欧拉环游C,然后顺次地在C上标上方向,由此得到C的定向图C1。 在C1中,去掉添加的边后,得到G的定向图D.显然:
|
|
设D=(V, E)是有向图,则:
| 略 |
|
定理1: 有向图D=(V,E)是强连通的,当且仅当D中存在包含D中所有顶点的回路。 | 证明:“必要性” 设V(D)={v1,v2,…,vn}。由于D是强连通图,所以,对任意两点vi与vj, 都存在(vi, vj)路,同时也存在(vj ,vi)路。所以存在如下闭途径:v1→v2→…→vn→v1。这是一条包含D的所有顶点的回路。 “充分性” 不失一般性,设C= v1→v2→…→vn→v1是包含D的所有顶点的一条回路。对于D的任意两点vi与vj(i<j) ,一方面,由C可得到vi到vj的途径vi →vi+1 →… →vj。另一方面,由C又可得到vj到vi的途径vj →vj+1 →…vi-1 →vi。所以D中任意两点是强连通的,即D是强连通图。 |
|
有向图D=(V,E)的每个点位于且仅位于D的某个强(弱)连通分支中。 | 证明:对于弱连通分支情形,命题结论是显然的。 对于强连通分支情形,因为不难证明:D中顶点间的强连通关系是等价关系。该等价关系对应的等价类在D中的导出子图必然是D的一个强分支。而D的一个强分支包含的顶点也必然是该等价关系的一个等价类。 但是,对于单向连通分支来说,D的某个顶点,可能会分属于D的若干个单向连通分支。原因是单向连通关系不是等价关系。 |
|
非平凡连通图G具有强连通定向当且仅当G是2边连通的。 | 略 |
|
定理4 (加莱,1968)有向图D中存在长度是 至少为
的有向路。 | 略 |
|
定理5 设D=(V,E) 是有向图。 (1) 若D中存在子图H使得对任意的v ∈V(H)均有d+(v)>0 (或d-(v)>0),则D中存在有向圈。 2) 若D连通,且对任意的v ∈V(D)均有d+(v)=1(或d-(v)=1),则D中存在唯一有向圈。 | 略 |
|
设D=(V,E) 是有向图。D中存在有向欧拉环游,当且仅当D连通且每个点的出度和入度相等; | 略 |
|
n阶完全图的定向有多少不同方式? |
|
|
对任意不含孤立点的n阶图G,有: α(G)+ β(G)= n | 证明:一方面,设V1是G的最大点独立集。因为G中每条边的端点最多一个在V1中,所以G中每条边的端点至少有一个在V-V1中。即V-V1构成G的一个点覆盖,于是有: β(G)≦|V-V1|=n - α(G) 另一方面,设K是G的最小点覆盖。因为G中每条边的端点至少有一个在K中,所以G中每条边的端点至多有一个在V-K中。即V-K构成G的一个点独立集,于是有: α(G) ≥|V-K|=n - β(G) 由上面两个不等式,得到: α(G)+ β(G)= n |
|
对任意不含孤立点的n阶单图G,有: α‵(G)+ β‵(G)= n | 例1 确定下图G的 α(G), β(G), α‵(G) , β‵(G)。
顶点2的左右两部分均是K4, 所以可以推知α(G)=2,再由加莱恒等式得: β(G) = 5 。 又因为G的阶数为7,所以,G的最大匹配包含的边数不会超过3,即α‵(G) ≦3; 而在G中找出了匹配:{16,23,45},所以α‵(G) ≥3, 所以α‵(G) =3。再由加莱恒等式: β‵(G)=4. |
|
定理3 设G是无孤立点的偶图,则G中最大点独立集包含的顶点数等于最小边覆盖所包含的边数。 | 证明:首先由两个加莱恒等式得: α(G)+ β(G)= α‵(G)+ β‵(G) 其次,由第5章中的哥尼定理得: α‵(G)= β(G) 所以得: α(G) = β‵(G) .定理得到证明。 |
|
定理4 点v是图G的β临界点当且仅当v含于G的某个最小点覆盖中。 | 注 (1) 有β临界边的图必有β临界点。 (2) 有β临界点的图不一定有β临界边。例如: 如C4 C4的每个点均是2临界点,但它的每条边均不是2临界边。 |
|
求(1) r(1,n); (2) r(3,3)
| 解:(1) r(1,n ) =1 (2)求 r(3,3 ) 一方面:注意到C5中既不含有K3,也不含有3点独立集,所以:r(3,3 )≥6; 另一方面:可以证明,任一6阶单图,或者含有K3,或者含有3点独立集。 事实上,设V(G)={v1,v2,…,v6}。考虑v1。 情形1 若G中至少有3个点与v1邻接。不失一般性,设v1与v2,v3,v4邻接。 如果v2,v3,v4互不邻接,则它们构成G的3点独立集;否则,显然在G中存在K3。 情形2 若G中至多有2个点与v1邻接。那么在G的补图中至少有3个顶点与v1邻接。于是由情形1,G的补图中或者存在K3或者存在3点独立集,当然在G中也就或者存在3点独立集或者存在K3. 所以,r(3, 3)=6。 |
|
| 已知,r(2, 5)=5, r(3,4)=9求(1) r(3, 5); (2) r(4, 4) : (1) 一方面由上面定理1: r(3, 5) ≦r(2, 5)+r(3, 4) =14 另一方面可以构造出一个13阶图G,它既不含K3,又不含5点独立集。所以,r(3, 5) =14。 (2) 一方面由上面定理1:r(4, 4) ≦r(3, 4)+r(4, 3) =18 另一方面可以构造出一个17阶图G,它既不含K4,又不含4点独立集。 所以,r(4, 4) =18。 |
|
应用题汇总
所属模型 | 题目 | 求解思路 | 出处 |
最短路模型 |
|
|
|
最小生成树模型 |
|
|
|
欧拉图模型 |
|
|
|
哈密尔顿图模型 | 今有a,b,c,d,e,f,g七个人围圆桌开会,已知:a会讲英语, b会讲英语和汉语,c会讲英语、意大利语和俄语,d会讲日语和汉语, e会讲德语和意大利语,f会讲法语、日语和俄语,g会讲法语与德语。 给出一种排座方法,使每个人能够和他身边的人交流(用图论方法求解)。
|
| 2008 |
匹配模型
| 今有赵、钱、孙、李、周五位教师,要承担语文、数学、物 理、化学、英语五门课程。已知赵熟悉数学、物理、化学三门课程,钱 熟悉语文、数学、物理、英语四门课程,孙、李、周都只熟悉数学和物 理两门课程。问能否安排他们 5 人每人只上一门自己所熟悉的课程,使 得每门课程都有人教,说明理由 |
| 2007,2011,2016 |
匹配模型 | 由于在考试中获得好成绩,6 名学生 ABCDEF将获得下列书籍的 奖励,分别是:代数学(a),微积分(c),微分方程(d),几何学(g),数学史(h),规划学 (p),拓扑学(t)。每门科目只有 1 本书,而每名学生对书的喜好是: A:d, h, t ;B: h, t ;C:d, h ;D:d, t ;E:a, c, d ; F::c, d, p, g 。 每名学生是否都可以得到他喜欢的书?为什么?(用图论方法求解) |
| 2012 |
匹配模型 | 某大型公司 7 个不同部门有些公开职位,分别是(a):广告设计,(b):营销,(c ):计算师,(d)规划师(e):实验师,(f):财政主管,(g):客户接待。有 6 名应聘者前来申请这些职位,分别是: Alvin(A):a, c, f; Beverly(B): a, b, c, d, e, g; Connie(C ): c, f; Donald(D): b,c,d,e,f,g; Edward(E): a, c, f: Frances(F): a, f. (1) 用偶图为此问题建模; (2) 这 6 名应聘者是否可以得到他们申请的职位?为什么? (注:要求每位申请者只能获得一个职位,每个职位只能被一位申请者 获得) |
| 2013 |
匹配模型 | 某工厂有4名工人和4种工作. 每个工人干不同工作的效率由下面矩阵A给出( aij 代表工人 i 干第 j 件工作的效率). 试给 4 名工人分别安排一种工作, 使得他们总的效率最高.
|
| 2019 |
平面图模型 | 富勒烯图(Fullerene graph)是一种只包含五边形面和六边形面的三正则连通平面图. 试求富勒烯图的五边形面的个数. |
| 2019 |
点着色模型
| 课程安排问题:某大学数学系要为这个夏季安排课程表。 所要开设的课程为:图论(GT), 统计学(S),线性代数(LA), 高等微积分(AC), 几何学(G), 和近世代数( MA )。现有10名学生(学生用Ai表示,如下所示)需要选修这些课程。根据这些信息,确定开设这些课程所需要的最少时间段数,使得学生选课不会发生冲突。 (要求用图论方法求 解) A1 : LA, S ; A2 : MA, LA, G ; A3: MA, G, LA ; A4: G, LA, AC ; A5: AC, LA, S ; A6: G, AC; A7: GT, MA, LA ; A8: LA,GT, S ; A9: AC, S, LA; A10: GT, S |
| 2011 |
点着色模型 | 一家公司计划建造一个动物园,他们打算饲养下面这些动物: 狒狒(b)、狐狸(f)、山羊(g)、土狼(h)、非洲大羚羊(k)、狮子(l)、豪猪(p)、兔子(r)、鼩鼱(s)、羚羊(w)和斑马(z)。根据经验,动物的饮食习惯为:狒狒喜欢吃山羊、非洲大羚羊(幼年)、兔子和鼩鼱;狐狸喜欢吃山羊、豪猪、兔子和鼩鼱;土狼喜欢吃山羊、非洲大羚羊、羚羊和斑马;狮子喜欢吃山羊、非洲大羚羊、羚羊和斑马;豪猪喜欢吃鼩鼱和兔子;而其余的则喜欢吃虫子、蚯蚓、草或其它植物。公司将饲养这些动物,希望它们能自由活动但不能相互捕食。求这些动物的一个分组,使得需要的围栏数最少。(要求用图论方法求解) |
| 2009,2010,2015,2017 “划分”问题 |
点着色模型 | 有 6 名博士生要进行论文答辩,答辩委员会成员分别是 1 .A = {张教授,李教授,王教授}; 2 . A = {赵教授,李教授,刘教授}; 3 .A = {张教授,王教授,刘教授}; 4 . A = {赵教授,王教授,刘教授}; 5 .A = {张教授,李教授,孙教授}; 6 . A = {李教授,王教授,刘教授}。 要使教授们参加答辩会不至于发生时间冲突,至少安排几次答辩时间 段?请给出一种最少时间段下的安排。 |
| 2013 “划分”问题 |
边着色模型
| 来自亚特兰大,波士顿,芝加哥,丹佛,路易维尔,迈阿密, 以及纳什维尔的 7 支垒球队受邀请参加比赛,其中每支队都被安排与一 些其它队比赛(安排如下所示)。每支队同一天最多进行一场比赛。建立 一个具有最少天数的比赛时间表。 亚特兰大:波士顿,芝加哥,迈阿密,纳什维尔 波士顿:亚特兰大,芝加哥,纳什维尔 芝加哥:亚特兰大,波士顿,丹佛,路易维尔 丹佛:芝加哥,路易维尔,迈阿密,纳什维尔 路易维尔:芝加哥,丹佛,迈阿密 迈阿密:亚特兰大,丹佛,路易维尔,纳什维尔 纳什维尔:亚特兰大,波士顿,丹佛,迈阿密 (要求用图论方法求解) |
| 2008 最小匹配分解问题 |
边着色模型 | 5 个人ABCDE被邀请参加桥牌比赛。桥牌比赛规则是每一场比赛由 两个2人组进行对决。要求 每个2人组{ } , XY都要与其它2人组{ } , WZ(W,Z ∉{X,Y}) 进行对决。若每个人都要与其他任意一个人组成一个 2 人组,且每个组在同一天不 能有多余一次的比赛,则最少安排多少天比赛(每一天可以有多场比赛)?请给出 相应的一个时间安排表。(用图论方法求解) |
| 2012 最小匹配分解问题 |
边着色模型 | Alvin (A)曾邀请 3 对夫妇到他的避暑别墅住一个星期。他们是: Bob 和 Carrie , David 和 Edith, Frank 和 Gena。由于这 6 人都喜欢网球运动,所以他们决定进 行网球比赛。 6 位客人的每一位都要和其配偶之外的每位客人比赛。另外,Alvin 将分别和 David, Edith, Frank, Gena 进行一场比赛。若没有人在同一天进行 2 场比赛,则要在最少天数完成 比赛,如何安排?。 |
| 2018 最小匹配分解问题 |
边着色模型 | 某车站有如下9种品名的危险货物要存放于仓库中: a 鞭炮, b 压缩氧, c 丙酮, d 火柴, e 锂电池, f 棉花, g 溴, h 硝酸, i 氢氧化钠. 其中一些货物是互不相容的, 如果它们相互接触, 则会引起爆炸或损坏. 每种货物与其它货物不相容的情况如下: “×”表示不相容. a×c; a×e; a×g; a×h; b×c; b×d; b×e; c×e; d×e; d×h; e×g; e×h; f×g; f×h; g×i; h×i 试确定需要仓库的最少数量, 使得存储后的货物是安全的. 并给出一种可行的存储方案. |
| 2019 |
覆盖模型 |
|
|
|
强连通性定向模型 |
|
|
|
| 某年级学生共选修 9 门课。期末考试时,必须提前将这 9 门课 先考完,每天每人只在下午考一门课,则至少需要__天才能考完这9门课。??? |
| 2007 |
2020考试范围:
第八章的内容(Ramsey理论, 独立集和覆盖的关系不会考),但独立集和覆盖在前面章节出现过的内容是在考试范围里的. 第九章有向图讲过的内容是考试范围里的;
临界图, 完美图, Ramsey理论,独立集和覆盖的关系均不在考试范围内