电子科技大学2019年图论期末考试答案总结(不一定正确,仅供参考)
电子科技大学2018年图论期末考试答案总结(不一定正确,仅供参考)
电子科技大学2017年图论期末考试答案总结(不一定正确,仅供参考)
电子科技大学2016年图论期末考试答案总结(不一定正确,仅供参考)
电子科技大学2015年图论期末考试答案总结(不一定正确,仅供参考)
电子科技大学2014年图论期末考试答案总结(不一定正确,仅供参考)
电子科技大学2013年图论期末考试答案总结(不一定正确,仅供参考)
电子科技大学2012年图论期末考试答案总结(不一定正确,仅供参考)
电子科技大学2011年图论期末考试答案总结(不一定正确,仅供参考)
电子科技大学2010年图论期末考试答案总结(不一定正确,仅供参考)
电子科技大学2009年图论期末考试答案总结(不一定正确,仅供参考)
电子科技大学2008年图论期末考试答案总结(不一定正确,仅供参考)
电子科技大学2007年图论期末考试答案总结(不一定正确,仅供参考)
题号 | 答案 | 知识点与备注 |
填空题 | ||
1 | 题目有误 | 自补图的定义 |
2 | n1n2; n1m2+n2m1 | 积图的定义 |
3 | 2^m | 生成子图的定义 |
4 | n | 邻接谱的含义与计算; 过程如下: |
5 | 因为完全且等部,故每部顶点数为(n/l),任意两部之间的边数为(n/l)^2, 再乘上2Cl=l(l-1)/2即可 | |
6 | 8
| 最小生成树算法 |
7 | C1,6和C2,6 | 度极大非H图族的定义:n<m/2 某些答案给出的也有C3,6,根据书上定义C3,6是错误的 |
8 | 4 | 不同的2因子分解的数目十分复杂,考试算出来不现实,书上和PPT也没有讲过,故本题应理解为1个2因子分解中有多少边不重的二因子,即为4个。 |
9 | n-2; m=3n-6. | 书上定理。 n-2:由数学归纳证明。 m=3n-6: 由 A. 2m=3Φ; B. 欧拉公式 联立即可得证 |
10 | 3;4 | 点色数: 存在奇圈,故大于等于3;又能找到3故为3; 边色数: 彼得森图无1因子分解(去掉一个一因子后剩下两个5点圈,故不能1因子分解),所以边色数>=4. 又能找到边色数=4的作色,故为4. |
选择题 | ||
1 | D | 图序列的判定(充要条件) |
2 | A | 强连通图的定义 |
3 | D | Qn是n正则偶图; n正则(n>0)偶图必存在完美匹配(证明时先证两部顶点数相同,之后X中任意集S关联边集为E1,N(S)关联边集为E2,则E1包含于E2,故E1边数=k|S|小于等于E2边数=k|N(S)|,故Hall定理有饱和X的匹配,又顶点数相同,故有完美匹配。) |
4 | C | 由对偶图做法,AB显然; C成立当且仅当G连通; D是定理,证明: 通过对任意两点构造一条曲线来证明,将面边序列转换为点边序列。 |
大题 | ||
三 | 握手定理+树m=n-1 得树根度数为3 | |
四 | 反证法 设e=uv为割边,则去掉e后对G1用握手定理, 得总度数和为奇数,不是2m,矛盾! 故没有割边 | |
五 | (1) 在G中删掉一点v(任意的)得图G1; (2) 在图G1中求出一棵最小生成树T; (3) 在v的关联边中选出两条权值最小者e1与e2. 若H是G的最优圈,则: W(H)>=W(T)+W(e1)+W(e2) 理由:见课本P88最后一段 设C为最优哈密尔顿圈, 则对任意顶点v,C-v是最优哈密尔顿路,也是G-v中的生成树 因此,若T是G-v的最小生成树,同时e和f是和v关联的两条边,并使得w(f)+w(e)尽可能小,则W(T)+W(e)+W(f)将是一个下界。 | |
六 | 虽然本题和Hall定理不同,但完全可以参照Hall定理来证明。 必要性: 设M*是完美匹配,则对于V的任意子集S,由于S的顶点在M下和N(S)中的相异顶点配对,故显然有|N(S)|>=|S|. 充分性: 可通过Hall定理的证明来证明;或者直接使用Hall定理: 对X的任意子集S,因为|N(S)|>=|S|,故能够饱和X的所有顶点;|X|<=|Y| 对Y的任意子集S,因为|N(S)|>=|S|,故能够饱和Y的所有顶点;|Y|<=|X|,|X|=|Y| 因此,存在完美匹配。 | |
七 | 由握手定理+欧拉公式: m<=3Φ-6; 反证,若deg(f)>=6 由面的次数定理得2m>=6Φ 矛盾! | |
八 | 点色数 有K3,故点色数>=3 可找到,故点色数=3 分组略 | |
九 | 2[k]3+3[k]4+[k]5 过程略,建议理想子图计数法 |