大模型概念解析 | In-context Learning

122 篇文章 139 订阅 ¥29.90 ¥99.00
本文解析了大模型中的In-context Learning(ICL),这是一种无需显式微调就能根据上下文信息完成新任务的能力。ICL具有上下文敏感性、知识迁移能力和少样本学习的特点,通过构建上下文,大模型能灵活应对各种任务。GPT-3和PaLM等模型展示了ICL的强大潜力,相关研究也在不断探索其理论基础和应用边界。
摘要由CSDN通过智能技术生成
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

R.X. NLOS

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值