杜立特尔法解方程组

该博客介绍了如何用杜立特尔法(Doolittle's Algorithm)进行矩阵三角分解A=LU,并编写了相关子程序来解线性方程组AX=b。通过解一系列方程AX=bk(k=1,2,...,10),其中A为特定矩阵,b1为非零向量,后续向量bk+1由当前解Xk标准化得到。程序输出L,U,bk和Xk的结果,并鼓励观察其中可能存在的有趣现象。" 89362411,6817671,SparkStreaming处理Kafka空数据及SQL查询错误,"['Spark', 'kafka', '数据处理', '流处理', '错误处理']
摘要由CSDN通过智能技术生成

试编出下列子程序:

(1)实现矩阵三角分解A=LU;

(2)利用分解因子L,U解方程组AX=b(即先求解LY=b 再求解UX=Y)的子程序。

利用上述子程序解线性方程组AX=bk(k=1,2,…,10),其中

A=1  2 4  7  11  16

  2 3  5  8 12  17

  4 5  6  9 13  18

  7 8  9  10 14 19

  11 12 13 14 15  20

  16 17 18 19 20  21

b1为任一非零的六元向量;若记Xk为AX= bk的解向量,则取bk+1=Xk/||Xk||.请输出结果:L;U;bk;Xk     (k=1,2,…,10).并认真观察之,能发现什么有趣的现象. 


还是计算方法的作业,按照书中的公式和流程图实现一下

input

6
1 2 4 7 11 16
2 3 5 8 12 17
4 5 6 9 13 18
7 8 9 10 14 19
11 12 13 14 15 20
16 17 18 19 20 21

b向量任意:6个1就行

1 1 1 1 1 1


#include <iostream>
#include <stdio.h>
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值