离散型数据编码

对比LabelEncoder 和OneHot编码:

LabelEncoder编码:

from sklearn import preprocessing
import pandas as pd
df = pd.DataFrame([
            [-1 , 'A'],
            [2   , 'B'],
            [1  , 'A']])
df.columns = ['age',  'class']

le = preprocessing.LabelEncoder()
age_df=le.fit_transform(df['age'])
print(list(le.classes_))
print(age_df)
# 三个类别分别为0 1 2
age_df = pd.get_dummies(age_df, prefix='color_df')
age_df

OneHot编码

import pandas as pd
df = pd.DataFrame([
            [-1 , 'A'],
            [2  , 'B'],
            [1  , 'A']])
df.columns = ['age',  'class']
print(df)
print(pd.get_dummies(df['age'],prefix='age'))

 

 

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值