TextRank学习笔记

TextRank算法源自PageRank,用于文本处理。通过构建单词或句子的图并定义边的关系,可提取文章关键词和摘要。关键词提取中,单词为节点,利用n-gram确定边;摘要提取时,句子为节点,通过计算句子相似度确定带权边。该算法无需训练,适用于文章摘要任务。
摘要由CSDN通过智能技术生成

TextRank起源与PageRank

TextRank的灵感来源于大名鼎鼎的PageRank算法,这是一个用作网页重要度排序的算法。

并且,这个算法也是基于图的,每个网页可以看作是一个图中的结点,如果网页A能够跳转到网页B,那么则有一条A->B的有向边。这样,我们就可以构造出一个有向图了。

然后,利用公式:

经过多次迭代就可以获得每个网页对应的权重。下面解释公式每个元素的含义:

S ( V i ) S(V_i) S(Vi) : 网页 V i V_i Vi的重要度(权重),初始值可设为1。
d d d : 阻尼系数,一般为0.85。
I n ( V i ) In(V_i) In(Vi</

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值