通义千问Qwen 2大模型的预训练和后训练范式解析

LLMs,也就是大型语言模型,现在已经发展得挺厉害的。记得最开始的时候,我们只有GPT这样的模型,但现在,我们有了一些更复杂的、开放权重的模型。以前,训练这些模型的时候,我们主要就是做预训练,但现在不一样了,我们还会加上后训练这个阶段。

图片

咱们今天就以通义千问Qwen 2这个模型为例,来好好分析一下Qwen 2的预训练和后训练都是怎么搞的。它在大型语言模型界里算是挺能打的。不过,虽然它很强,但可能因为一些原因,它还没有像国外Meta AI、Microsoft和Google的那些模型那么火。

Qwen 2模型基本情况

Qwen 2有五种不同的规格,就像手机有不同内存大小一样。它有四个常规的模型,参数量分别是5亿、15亿、70亿和720亿。参数就像是模型的大脑细胞,参数越多,模型能处理的信息就越多。除了这些,还有一个专家混合模型,这个模型有57亿参数,其中有14亿是同时工作的。

Qwen 2的一个亮点是它在30种语言上都表现得很好,这就像是个多语言的天才。它还有一个特别大的词汇表,有151,642个标记(tokens)。这比很多其他模型的词汇表都要大,比如Llama 2有32k个标记,Llama 3.1有128k个标记。词汇表越大,模型处理信息的时候就越灵活,尤其是在处理多种语言的时候。

再来看看Qwen 2和其他一些模型在MMLU基准测试上的分数。MMLU是个多项选择题的测试,虽然它有局限性,但大家还是挺喜欢用它来衡量模型的表现的。咱们稍后会详细看看这些分数。

图片

最新开放权重模型的MMLU基准测试分数(较高的值更好)

Qwen 2的预训练过程

Qwen 2团队在7万亿个训练标记上训练了15亿、70亿和720亿参数的模型。这个训练量听起来是不是挺吓人的?对比一下,Llama 2模型只用了2万亿个标记(tokens)来训练,而Llama 3.1模型则用了15万亿个标记。

但是,Qwen 2的5亿参数模型训练得更狠,用了12万亿个标记。研究人员没在更大的数据集上训练其他模型,因为他们发现这样训练效果提升不大,而且计算成本太高,不划算。

在预训练的时候,他们特别注重提高数据质量,比如过滤掉那些质量不高的数据,还有增加数据的多样性。这都是为了确保模型能学到更多有用的东西。

他们还用了一种挺聪明的方法,就是用Qwen模型自己生成一些预训练数据。这样可以让模型更好地理解上下文,以及如何根据指令来做出反应。

训练过程是分两个阶段的。先是常规的预训练,然后是长上下文训练。长上下文训练是在预训练快结束的时候进行的,用的是高质量的、长的数据。这个过程可以把模型处理上下文的能力从4,096个标记提高到32,768个标记,这就像是让模型的记忆力变得更强了。

图片

Qwen 2预训练技术,“持续预训练”指的是两阶段预训练,研究人员从常规预训练开始,然后进行了长上下文持续预训练

Qwen 2的后训练过程

Qwen 2团队用了一种流行的两阶段后训练方法。

第一阶段是监督指令微调(SFT),他们在500,000个示例上进行了2个周期的训练。这个阶段的目标是让模型在特定场景下给出更准确的回答。

图片

 

第二阶段,他们用直接偏好优化(DPO)来让模型更符合人类的偏好。SFT加上DPO的方法因为操作简便,比其他方法(比如带PPO的RLHF)更受欢迎。更多关于DPO的详情,可参见:《LLM 直接偏好优化(DPO)的一些研究》。关于PPO与DPO的对比,可以参见:《大模型对齐:DPO vs PPO

对齐阶段也分两步走。首先是在现有的数据集上用DPO进行离线训练。然后是在线阶段,模型在训练时生成多个回答,奖励模型在训练过程中实时选择最优的回答。这个过程也叫做“拒绝采样”。

在构建数据集时,他们用了现有的语料库,并且加上了人工标注,来确定SFT的目标回答,以及识别DPO需要的偏好和拒绝回答。研究人员还自己合成了一些人工标注的数据。

此外,团队还用LLM生成了专门针对“高质量文学数据”的问答对,这样就能创建出用于训练的高质量Q&A对。这样可以让模型在处理文学类问题时表现得更好。

图片

Qwen 2后训练技术

现在我们来总结一下,其实Qwen 2这个模型挺有两把刷子的。它和之前的Qwen模型一样,在2023年12月的NeurIPS LLM效率挑战赛上,很多获胜的方法都用了Qwen模型。

说到Qwen 2的训练流程,一个亮点就是他们用合成数据来预训练和后训练。这就像是用模型自己生成的练习题来提高自己的能力。

另外,他们特别注重数据集的质量,而不是一味地追求数据量。这意味着,他们更看重数据的质量而不是数量。在训练模型的时候,他们认为,数据不仅要多,更要精,只有高质量的数据才能帮助模型更好地学习。

所以,Qwen 2的训练团队在这方面做得挺到位的,他们知道怎么用有限的资源来达到最好的效果。这种注重质量的训练方法,值得其他模型训练团队学习。

### 通义大模型的视觉模块应用技术细节 #### 统一架构下的多模态融合 通义基于阿里巴巴达摩院研发的通义大模型体系,其核心设计理念之一是“多模态融合”[^1]。这意味着该模型能够同时处理多种类型的输入数据,包括但不限于文本、图像、视频以及3D模型等。这种能力使得通义不仅限于单一的任务领域,而是能够在多个应用场景中表现出色。 #### 视觉生成的具体实现 当涉及到具体的视觉生成任务时,例如根据一段文字描述生成相应的设计草图或营销图片,通义会调用内部集成的多模态子模型来完成这一过程。这些子模型经过专门优化,可以高效解析自然语言并映射到对应的视觉特征空间[^4]。例如,“设计一款国风茶杯”的指令会被分解成若干关键要素——风格定义(国风)、对象类别(茶杯),随后由视觉生成部分负责渲染具体的设计图案整体外观效果。 #### 技术支撑:OFA框架的作用 在更深层次的技术层面来看,通义大模型采用了名为OFA的统一学习范式作为基础架构支持[^2]。此范式的引入实现了不同感官形式间表征的一致性表达,即无论是来自文本还是图像的信息都能被转换至同一向量空间内进行交互运算。这样的机制极大地促进了跨域协作效率,并且对于复杂任务如AI教育辅助工具开发提供了坚实保障—比如前述提到过的高中数学教学视频自动生成流程就依赖于此种强大的综合处理能力。 #### 开源版本中的体现 值得注意的是,在对外发布的开源项目当中也包含了针对特定功能定制化调整后的实例代码片段供开发者参考借鉴[^3]。虽然目前公开文档主要聚焦于文本生产方面的大规模预训练成果展示(如Qwen-Max系列),但从整个生态系统布局角度出发仍可以看出官方团队持续探索其他方向潜力的决心所在。 ```python from transformers import AutoTokenizer, AutoModelForVisionTasks tokenizer = AutoTokenizer.from_pretrained("damo-vilab/visual-text-pretrain-model") model = AutoModelForVisionTasks.from_pretrained("damo-vilab/visual-text-pretrain-model") input_text = "Generate a design sketch of an ancient Chinese style teacup." inputs = tokenizer(input_text, return_tensors="pt") outputs = model.generate(**inputs) print(outputs) ``` 上述伪代码展示了如何加载一个预先训练好的视觉-文本联合建模权重文件,并通过简单的API接口调用来触发一次典型的创作请求操作序列。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值