YOLOv8 cityscapes城市道路语义分割

YOLOv8_cityscapes项目说明

阐述了如何将Cityscapes[1]数据集应用于YOLOv8[2]语义分割任务的技术方案。

核心特性
鉴于原始数据集格式的兼容性问题,本项目实现了数据格式的转换处理流程:

  1. 数据格式转换需求:
  • Cityscapes数据集默认采用图像坐标系下的多边形标注方式
  • YOLOv8要求使用归一化坐标系下的多边形分割标注格式
    在这里插入图片描述
  1. 转换处理流程:
  • 将Cityscapes的JSON标注文件转换为.txt格式
  • 过滤删除标签值为255的无效标注条目
  • 统一图像文件与标注文件的命名规范
  • 在数据集根目录创建data.yaml配置文件,明确指定:
    • 训练集/验证集/测试集路径
    • 有效标签类别数值

类别

nc: 19  # Number of classes in the Cityscapes dataset used for training

names: [
  'road',            # Class ID 0
  'sidewalk',        # Class ID 1
  'building',        # Class ID 2
  'wall',            # Class ID 3
  'fence',           # Class ID 4
  'pole',            # Class ID 5
  'traffic light',   # Class ID 6
  'traffic sign',    # Class ID 7
  'vegetation',      # Class ID 8
  'terrain',         # Class ID 9
  'sky',             # Class ID 10
  'person',          # Class ID 11
  'rider',           # Class ID 12
  'car',             # Class ID 13
  'truck',           # Class ID 14
  'bus',             # Class ID 15
  'train',           # Class ID 16
  'motorcycle',      # Class ID 17
  'bicycle'          # Class ID 18
]

命令行指令
python convert.py <annotation_folder_path>

演示案例
result_example目录包含基于Cityscapes数据子集训练的模型文件,并提供示例图像展示YOLOv8模型的数据输入格式要求。实际训练建议使用完整数据集。

训练成果应用:
已将训练模型成功应用于Cityscapes街景视频分析,效果展示如下:
[此处应插入GIF动态演示图]

在这里插入图片描述

数据使用规范
本项目的Cityscapes数据集使用需遵守以下规定:

  1. 使用限制:仅限非商业用途
  2. 引用要求:必须标明Cityscapes数据集来源
  3. 衍生条款:任何数据修改或衍生作品需遵循相同许可协议
    在这里插入图片描述

(注:实际翻译时"alt text"作为占位符可不译,GIF动态图需替换为实际演示内容。技术术语如"normalized coordinates"保持专业译法"归一化坐标系",“semantic segmentation"统一译为"语义分割”。)

### 使用YOLO模型处理Cityscapes数据集 #### 准备工作 对于使用YOLO模型来处理Cityscapes数据集,首先要准备好必要的环境配置以及数据预处理。由于Cityscapes数据集主要用于语义分割任务,而YOLO系列模型最初设计用于目标检测,在应用之前可能需要一些调整。 - **安装依赖库** 确保已经安装了所有必需的Python包和其他软件依赖项[^2]。这通常包括但不限于PyTorch框架及其相关组件、OpenCV等图像处理工具以及其他辅助库。 ```bash pip install torch torchvision opencv-python-headless albumentations ``` #### 数据准备 考虑到Cityscapes数据集的特点,建议将其转换成适合YOLO输入的数据格式——即VOC格式。这样做的好处是可以简化后续操作流程并提高兼容性[^3]。具体来说: - 利用提供的脚本或工具完成从原始Cityscapes格式向VOC格式的转变; - 对于每张图片创建对应的XML标签文件,记录其中的对象位置信息(边界框坐标)、类别名称等内容; 此外,还需要注意的是要合理划分训练集、验证集和测试集的比例,以保证实验结果的有效性和可靠性。 #### 训练过程 一旦完成了上述准备工作,则可以直接利用官方发布的YOLOv5或其他版本作为基础架构来进行微调(fine-tuning),或者根据实际情况构建全新的网络结构。在此期间,应当密切关注`results.csv`所反映出来的各项评价指标的变化趋势,比如精确度(Precision)、召回率(Recall)及平均精度均值(mAP)[^1],以此指导参数调节方向直至获得满意的效果为止。 ```python from yolov5 import train, val if __name__ == '__main__': # 调用train函数启动训练程序 train.run(imgsz=640, batch_size=16, epochs=100, data='path/to/data.yaml', weights='yolov5s.pt') # 完成后可执行val命令检验最终成果 val.run(data='path/to/data.yaml', weights='runs/train/exp/weights/best.pt') ``` #### 结果分析与改进措施 经过一段时间的学习之后,可以通过可视化手段直观展示预测结果同真实情况之间的差异程度,并据此采取相应策略进一步提升性能表现。如果发现某些特定类型的实例总是难以被正确识别出来的话,不妨尝试增加该类样本数量或是引入更多样化的增强方式来改善这一状况。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值