YOLOv8_cityscapes项目说明
阐述了如何将Cityscapes[1]数据集应用于YOLOv8[2]语义分割任务的技术方案。
核心特性
鉴于原始数据集格式的兼容性问题,本项目实现了数据格式的转换处理流程:
- 数据格式转换需求:
- Cityscapes数据集默认采用图像坐标系下的多边形标注方式
- YOLOv8要求使用归一化坐标系下的多边形分割标注格式
- 转换处理流程:
- 将Cityscapes的JSON标注文件转换为.txt格式
- 过滤删除标签值为255的无效标注条目
- 统一图像文件与标注文件的命名规范
- 在数据集根目录创建data.yaml配置文件,明确指定:
- 训练集/验证集/测试集路径
- 有效标签类别数值
类别
nc: 19 # Number of classes in the Cityscapes dataset used for training
names: [
'road', # Class ID 0
'sidewalk', # Class ID 1
'building', # Class ID 2
'wall', # Class ID 3
'fence', # Class ID 4
'pole', # Class ID 5
'traffic light', # Class ID 6
'traffic sign', # Class ID 7
'vegetation', # Class ID 8
'terrain', # Class ID 9
'sky', # Class ID 10
'person', # Class ID 11
'rider', # Class ID 12
'car', # Class ID 13
'truck', # Class ID 14
'bus', # Class ID 15
'train', # Class ID 16
'motorcycle', # Class ID 17
'bicycle' # Class ID 18
]
命令行指令
python convert.py <annotation_folder_path>
演示案例
result_example目录包含基于Cityscapes数据子集训练的模型文件,并提供示例图像展示YOLOv8模型的数据输入格式要求。实际训练建议使用完整数据集。
训练成果应用:
已将训练模型成功应用于Cityscapes街景视频分析,效果展示如下:
[此处应插入GIF动态演示图]
数据使用规范
本项目的Cityscapes数据集使用需遵守以下规定:
- 使用限制:仅限非商业用途
- 引用要求:必须标明Cityscapes数据集来源
- 衍生条款:任何数据修改或衍生作品需遵循相同许可协议
(注:实际翻译时"alt text"作为占位符可不译,GIF动态图需替换为实际演示内容。技术术语如"normalized coordinates"保持专业译法"归一化坐标系",“semantic segmentation"统一译为"语义分割”。)