yolov8训练与推理-初试

本文介绍了如何在Windows上安装Anaconda和CUDA,包括驱动检查、工具包下载,以及如何配置国内pip镜像源。还详细讲述了在Pycharm中使用yolov8进行深度学习项目开发,包括环境激活、库管理、模型训练和推理的过程。
摘要由CSDN通过智能技术生成

1.Anaconda安装

https://repo.anaconda.com/archive/

 找到下载后的exe程序,双击安装运行

2.Cuda安装

 Windonws命令行中输入nvidia-smi查看驱动信息

显卡和cuda 的对应信息:

下载安装CUDA工具包
https://developer.nvidia.cn/zh-cn/cuda-toolkit

下载安装cuDNN
https://developer.nvidia.com/rdp/cudnn-download

下载需要登录和填写一些问卷之类的,也挺快的。

 

下载与自己CUDA对应的版本,下载好之后,解压缩,将CUDNN压缩包里面cuda路径下的bin、include、lib文件里的东西直接复制到CUDA的安装目录下对应文件夹内即可。

3.国内镜像源 

 附上 pip 国内镜像源

pip使用清华源镜像源

pip install <库> -i https://pypi.tuna.tsinghua.edu.cn/simple/

pip使用豆瓣的镜像源

pip install <库> -i https://pypi.douban.com/simple/

pip使用中国科技大学的镜像源

pip install <库> -i https://pypi.mirrors.ustc.edu.cn/simple/

pip使用阿里云的镜像源

pip install <库> -i http://mirrors.aliyun.com/pypi/simple/

4.v8代码下载

如果出现如下错误:

执行:

git config --global https.sslVerify "false"

之后成功:

D:\works\PycharmProjects\yolov8>git clone https://github.com/ultralytics/ultralytics

Cloning into 'ultralytics'...

remote: Enumerating objects: 10275, done.

remote: Counting objects: 100% (2396/2396), done.

remote: Compressing objects: 100% (1101/1101), done.

remote: Total 10275 (delta 1640), reused 1943 (delta 1291), pack-reused 7879

Receiving objects: 100% (10275/10275), 6.36 MiB | 5.88 MiB/s, done.

Resolving deltas: 100% (6962/6962), done.

 

5.开发环境配置

 

 

Pycharm控制台输入:

 conda activate yolov8

然后:

(yolov8) PS D:\works\PycharmProjects\yolov8\ultralytics> pip install -e .

......

Successfully installed ultralytics-8.0.110

校验cuda:

False说明后面训练时只会用到CPU

重新安装torch,先卸载:

再重新安装对应版本的包:

 

再次确认环境ok 

加入mime.yaml 

 

增加数据集: 

开始训练:

yolo detect train data=mine.yaml model=yolov8n.yaml pretrained=yolov8n.pt epochs=100 imgsz=640 amp=False

训练结果:

推理:

yolo detect predict  model=runs/detect/train5/weights/best.pt     

结果:

 

 

 

 

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值