1.Anaconda安装
https://repo.anaconda.com/archive/
找到下载后的exe程序,双击安装运行
2.Cuda安装
Windonws命令行中输入nvidia-smi查看驱动信息
显卡和cuda 的对应信息:
下载安装CUDA工具包
https://developer.nvidia.cn/zh-cn/cuda-toolkit
下载安装cuDNN
https://developer.nvidia.com/rdp/cudnn-download
下载需要登录和填写一些问卷之类的,也挺快的。
下载与自己CUDA对应的版本,下载好之后,解压缩,将CUDNN压缩包里面cuda路径下的bin、include、lib文件里的东西直接复制到CUDA的安装目录下对应文件夹内即可。
3.国内镜像源
附上 pip 国内镜像源
pip使用清华源镜像源
pip install <库> -i https://pypi.tuna.tsinghua.edu.cn/simple/
pip使用豆瓣的镜像源
pip install <库> -i https://pypi.douban.com/simple/
pip使用中国科技大学的镜像源
pip install <库> -i https://pypi.mirrors.ustc.edu.cn/simple/
pip使用阿里云的镜像源
pip install <库> -i http://mirrors.aliyun.com/pypi/simple/
4.v8代码下载
如果出现如下错误:
执行:
git config --global https.sslVerify "false"
之后成功:
D:\works\PycharmProjects\yolov8>git clone https://github.com/ultralytics/ultralytics
Cloning into 'ultralytics'...
remote: Enumerating objects: 10275, done.
remote: Counting objects: 100% (2396/2396), done.
remote: Compressing objects: 100% (1101/1101), done.
remote: Total 10275 (delta 1640), reused 1943 (delta 1291), pack-reused 7879
Receiving objects: 100% (10275/10275), 6.36 MiB | 5.88 MiB/s, done.
Resolving deltas: 100% (6962/6962), done.
5.开发环境配置
Pycharm控制台输入:
conda activate yolov8
然后:
(yolov8) PS D:\works\PycharmProjects\yolov8\ultralytics> pip install -e .
......
Successfully installed ultralytics-8.0.110
校验cuda:
False说明后面训练时只会用到CPU
重新安装torch,先卸载:
再重新安装对应版本的包:
再次确认环境ok
加入mime.yaml
增加数据集:
开始训练:
yolo detect train data=mine.yaml model=yolov8n.yaml pretrained=yolov8n.pt epochs=100 imgsz=640 amp=False
训练结果:
推理:
yolo detect predict model=runs/detect/train5/weights/best.pt
结果: