- 博客(45)
- 收藏
- 关注
原创 流逝的时光
明年希望能在看论文时能记录下自己的所思所想,把论文复现中遇到的问题记录下来,方便自己亦或能给予他人点微弱关怀!今研一,发现论文看了又忘,于是借此平台来记录,可以看到基本都是基于原论文进行翻译,并没有所思所想,所获甚微!自2019.6.28注册csdn,期间断断续续的通过其查找相应资料,受益颇多。
2023-12-31 13:40:26
442
原创 python导入同级目录下不同py文件中的类报错
py 文件,那么该目录将不会被视为Python的包。报错No module named ‘a’更改为from .a import A。但本项目中仍然报错找不到相应父包。创建__init__.py空文件。
2023-12-31 11:24:15
638
原创 TypeError: control character ‘delimiter‘ cannot be a newline (`\r` or `\n`)
如果你的数据文件中的每一行代表一个单独的注释(annotation),并且你希望每一行作为一个字符串元素读入到数组中,那么应该不指定。)作为分隔符(delimiter)。然而,换行符是用于标识文本文件中每一行的结束,而不是用于分隔数据字段。会把每个注释视为一个完整的字符串,并且将它们分别存储为数组中的元素。每一行就是一个数组的一个元素。参数,因为默认情况下,这个错误是因为在使用。函数时尝试将换行符(
2023-12-31 11:23:53
957
原创 Efficient Classification of Very Large Images with Tiny Objects(CVPR2022补2)
文章目录ExperimentsColon cancerExperimentsColon cancer
2023-12-30 20:40:43
456
原创 Efficient Classification of Very Large Images with Tiny Objects(CVPR2022补1)
进一步定义了一个函数Tₛ₂(Tₛ₁(x,c),c’),它从在尺度s₁下、位置c={i,j}的块Tₛ₁(x,c)中–>再在尺度s₂下的视图V(x,s₂)的位置c’={i’,j’}处提取一个大小为h₂×w₂的子块。至于内层的求和,它是针对那些不是当前正在评估的c’'的所有c来进行的。这个映射函数Tₛ₂(Tₛ₁(x,c),c’)与Tₛ₁(x,c)的定义类似,但返回的是尺寸为h₂×w₂而非h₁×w₁的子块 ,并且满足h₂ < h₁, w₂ < w₁以及h₂,w2 > 1/s₂的条件。
2023-12-30 16:00:16
1208
原创 Efficient Classification of Very Large Images with Tiny Objects(CVPR2022待补)
计算机视觉越来越多的应用,特别是在医学成像和遥感领域,当目标是对超大图像里的微小目标进行分类时,变得具有挑战性。
2023-12-29 17:05:12
931
原创 Openslide安装
表面上这样就可以导入了但事实上会遇到 Couldn’t locate OpendSlide DLL的问题,openslide必须独立安装。将你解压的openslide路径添加到环境变量中。
2023-12-29 07:00:00
1676
2
原创 Understanding Deep Image Representations by Inverting Them(2014)
从SIFT和视觉词袋到卷积神经网络(cnn),图像表示几乎是任何图像理解系统的关键组成部分。然而,我们对它们的了解仍然有限。在本文中,我们通过提出以下问题对表征中包含的视觉信息进行直接分析:给定图像的编码,在多大程度上可以重构图像本身?为了回答这个问题,我们提出了一个纵向表示的一般框架。我们表明,这种方法可以比最近的替代方法更准确地反演HOG和SIFT等表示,同时也适用于cnn。然后,我们第一次使用这种技术来研究最新的CNN图像表示的逆。
2023-12-28 11:16:17
1471
原创 cannot import name ‘Config‘ from ‘mmcv‘
【代码】cannot import name ‘Config‘ from ‘mmcv‘
2023-12-27 13:30:22
1291
1
原创 S^3 FD: Single Shot Scale-invariant Face Detector(2017)
针对基于锚点的人脸检测方法随着目标变小而性能急剧下降的问题,提出一种尺度均衡的人脸检测框架,该框架具有广泛的锚关联层和一系列合理的锚尺度,可以很好地处理不同尺度的人脸。•提出一种尺度补偿锚匹配策略,提高小人脸的召回率。•引入max-out背景标签,降低小人脸的高误报率。
2023-12-27 13:09:24
1378
原创 ATSS算法
作者比较了FCOS和RetinaNet,发现它们之间主要有三个区别:(1)每个位置平铺锚的数量。RetinaNet在每个位置平铺几个锚盒,而FCOS在每个位置平铺一个锚点。(2)正、负样本的定义。RetinaNet采用IoU,而FCOS则利用空间和尺度约束来选择样本。(3)回归开始状态。RetinaNet从预设锚点回归目标边界框,而FCOS从锚点定位目标。经过实验发现如果在训练过程中采用相同的正样本和负样本定义,无论是基于锚和无锚检测器,最终的表现都没有明显的差异。
2023-12-26 13:56:30
639
原创 Optimization(优化)
本文首先指出基于锚点和无锚点检测的本质区别在于如何定义正训练样本和负训练样本,然后,我们提出了一种自适应训练样本选择(ATSS)算法,根据目标的统计特征自动选择正样本和负样本,最后,我们讨论了在图像上每个位置平铺多个锚点来检测目标的必要性(不必要)
2023-12-26 07:00:00
234
原创 ATSS:Bridging the Gap Between Anchor-based and Anchor-free Detection via Adaptive Training (CVPR202
表明基于锚点和无锚点检测器之间的本质区别实际上是如何定义良好的正训练样本和负训练样本。•提出了一种自适应训练样本选择方法,根据目标的统计特征自动选择正训练样本和负训练样本。•证明在图像上的每个位置平铺多个锚点来检测物体是无用的操作
2023-12-25 20:07:45
336
原创 Object Detectors Emerge in Deep Scene CNNs(2015)
给出了简化图像的方法:给定图像,我们创建边缘和区域的分割,并迭代地从图像中删除片段。在每次迭代中,我们移除正确分类分数下降最小的部分,直到图像被错误分类。最后,我们得到原始图像的表示,它包含了网络正确识别场景类别所需的最少量的信息给出了感受野的实证研究,实际尺寸比理论尺寸小得多(尤其是后面层)
2023-12-25 10:24:03
277
原创 Understanding the Effective Receptive Field in Deep Convolutional Neural Networks(CVPR2017)
引入了有效接受野的概念,并证明它具有高斯分布,并且只占整个理论接受野的一小部分。我们分析了几种结构设计的有效接受场,以及非线性激活、dropout、子采样和跳过连接对其的影响
2023-12-24 11:53:52
493
原创 RFLA: Gaussian Receptive Field based Label Assignment for Tiny Object Detection(ECCV2022)
当前基于锚点或无锚点的标签分配范式将产生许多异常的微小的地面真值样本,导致检测器对微小物体的关注减少。为此,我们提出了一种基于高斯接受场的标签分配(RFLA)策略用于微小目标检测
2023-12-24 07:00:00
778
2
原创 U-Net: Convolutional Networks for Biomedical Image Segmentation(CVPR2015)
UNet的收缩路径(左侧)进行特征提取,并且随着网络层次的加深,感受野也会逐渐扩大,分辨率低、语义强获取的是图像整体性的特征,而浅层网络呢(分辨率高、语义弱)获取的是细粒度特征。右侧进行反卷积上采样,但因为卷积进行的下采样会导致部分边缘信息的丢失,失去的特征并不能从上采样中找回,因此作者采用了特征拼接操作来弥补,后续FPN貌似是延用了这一思想,通过横向连接将低分辨率语义强的特征和高分辨率语义弱的特征结合起来
2023-12-23 11:04:04
569
原创 Deep learning-based small object detection: A survey(2023)
小目标检测(SOD)在现实世界的许多应用中都很重要,包括刑事调查、自动驾驶和遥感图像。SOD由于其低分辨率和噪声表示一直是计算机视觉中最具挑战性的任务之一。随着深度学习的发展,人们引入深度学习来提高超SOD的性能。本文针对SOD的难点,从提高输入特征分辨率、尺度感知训练、融合上下文信息和数据增强四个方面对基于深度学习的SOD研究论文进行了分析。我们还回顾了关于SOD关键任务的文献,包括小人脸检测、小行人检测和航空图像目标检测。
2023-12-23 09:45:38
487
原创 RetinaNet:Focal Loss for Dense Object Detection(CVPR2018)
调查了为什么一阶段检测器精度不如两阶段检测器。发现,在密集检测器训练过程中遇到的极端前景-背景类不平衡是主要原因,因此提出了著名的焦点损失
2023-12-22 17:16:46
467
原创 TOD-CMLNN:Tiny object detection model based on competitive multi-layer neural network (2023待补)
本文提出了一种由三个子部分组成的TOD- CMLNN(微小目标检测竞争多层神经网络)体系结构,该结构由第一个子部分竞争多层网络、第二个子部分TOD辅助和第三个子部分多层次连续特征聚合组成,用于精确检测微小目标。目标检测的竞争学习是该体系结构的基础。
2023-12-22 12:05:11
135
原创 DETR:End-to-End Object Detection with Transformers(2020)
我们提出了一种将目标检测视为直接集预测问题的新方法。我们的方法简化了检测管道,有效地消除了许多手工设计的组件,如非最大抑制过程或锚生成,这些组件显式地编码了我们对任务的先验知识。新框架的主要组成部分,被称为检测变压器或DETR是一个基于集合的全局损失,它通过二元匹配强制进行唯一预测,以及一个变压器编码器-解码器架构。给定一组固定的小学习对象查询,DETR对对象和全局图像上下文的关系进行推理,以直接并行输出最终的预测集。
2023-12-22 09:25:00
98
原创 Dynamic Coarse-to-Fine Learning for Oriented Tiny Object Detection(CVPR2023待补)
针对定向微小目标的极端几何形状和有限特征仍然会导致严重的不匹配和不平衡问题作者提出了动态先念和由粗到精的分配器(DCFL)一方面以动态方式对先验、标签分配和目标表示进行建模,以缓和不匹配问题另一方面利用粗糙的先验匹配和更精细的后验约束来动态分配标签,为不同的实例提供适当和相对平衡的监督
2023-12-21 16:01:16
1470
原创 Once-for-All: Train One Network and Specialize it for Efficient Deployment(ICLR2020)
通过解耦训练和搜索来训练一个支持多种架构设置的一次性(OFA)网络,为了有效地训练OFA网络,提出了一种新的渐进式收缩算法,这是一种广义剪枝方法,它可以在比剪枝(深度、宽度、核大小和分辨率)更多的维度上减小模型大小
2023-12-20 18:16:24
214
原创 Searching for MobileNetV3(2019)
本文的目标是开发最好的移动计算机视觉架构,优化移动设备上的精度和延迟权衡。引入了(1)互补搜索技术,(2)适用于移动设置的新型高效非线性算法,(3)新型高效网络设计,(4)新型高效分割解码器
2023-12-20 11:59:05
198
原创 MnasNet: Platform-Aware Neural Architecture Search for Mobile(2019)
提出了一种自动移动神经架构搜索(MNAS)方法,与以前的方法的主要区别在于延迟感知的多目标奖励和新的搜索空间,实现了精度和延迟之间的最佳权衡
2023-12-19 21:59:45
444
原创 SE-Net:Squeeze-and-Excitation Networks(CVPR2018)
提出了一个SE块,在略微增加计算成本的情况下,为现有最先进的CNNs带来了显著的性能改进
2023-12-19 15:39:23
506
原创 ShuffleNet V2: Practical Guidelines for Efficient CNN Architecture Design(ECCV2018)
网络架构设计应该考虑直接指标,如速度,而不是间接指标,如FLOPs
2023-12-18 18:02:09
231
原创 Pelee: A Real-Time Object Detection System on Mobile Devices(CVPR 2019)
深度可分离卷积并不是建立高效模型的唯一方法
2023-12-18 11:05:09
510
原创 MobileNetV2: Inverted Residuals and Linear Bottlenecks(待补,2018提交2019最后修改此前所有都以最后修改时间为准)
在本文中,我们描述了一种新的移动架构,,它提高了移动模型在多个任务和基准测试以及不同模型尺寸范围内的最新性能。我们还描述了在我们称为SSDLite的新框架中应用这些移动模型进行对象检测的有效方法。此外,我们还演示了如何通过DeepLabv3的简化形式(我们称之为mobile DeepLabv3)构建移动语义分割模型它是基于一个反向残余结构,其中的捷径连接是在薄瓶颈层之间。中间扩展层使用轻量级深度卷积来过滤作为非线性源的特征。此外,我们发现为了保持表征能力,在窄层中去除非线性是很重要的。
2023-12-11 17:49:36
161
2
原创 ShuffleNet: An Extremely Efficient Convolutional Neural Network for Mobile Devices(2017)
ShuffleNet,轻量级NN
2023-12-11 10:49:48
190
原创 MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications(2017)
我们提出了MobileNets的高效模型,用于移动和嵌入式视觉应用。MobileNets基于流线型架构,使用深度可分离卷积来构建轻量级深度神经网络。我们引入了两个简单的全局超参数(宽度乘法器α和分辨率乘数ρ),它们可以有效地在延迟和准确性之间进行权衡。这些超参数允许模型构建者根据问题的约束为其应用程序选择合适大小的模型。我们在资源和精度权衡方面进行了广泛的实验,与其他流行的ImageNet分类模型相比,我们展示了强大的性能。
2023-12-10 17:38:47
180
原创 SqueezeNet: AlexNet-level accuracy with 50x fewer parameters and <0.5MB model size(2016)
最近对深度卷积神经网络(cnn)的研究主要集中在提高准确性上。对于给定的精度水平,通常可以识别达到该精度水平的多个CNN架构。在同等精度的情况下,较小的CNN架构提供了至少三个优势:(1)较小的CNN在分布式训练期间需要更少的服务器间通信。(2)较小的cnn从云端导出新模型到自动驾驶汽车所需的带宽更少。(3)较小的cnn更适合部署在FP-GAs和其他内存有限的硬件上。为了提供所有这些优势,我们提出了一个名为SqueezeNet的小型CNN架构。
2023-12-10 15:38:11
180
原创 EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks(2020)
提出了一种符合缩放方法,并开发了一个新的基线网络EfficientNet
2023-12-09 20:29:35
341
原创 CSPNet: A New Backbone that can Enhance Learning Capability of CNN(2019)
CSPNet可以显著降低计算瓶颈和精确融合模型(EFM),可以有效降低所需的内存带宽能够提高CNN的学习能力,可以有效减少内存
2023-12-09 16:20:42
418
原创 ResNeXt(2017)
ResNeXt在ResNet的基础上利用分组卷积来增强网络的表达能力,通过这种结构的组合和堆叠,实现了深层网络的训练和优化。它在ImageNet等数据集上取得了较好的性能,并且相对于传统的ResNet网络,具有更高的参数效率和计算效率
2023-12-08 18:41:10
276
原创 GoogleNet/Inception(2014)
我们提出了一个代号为Inception的深度卷积神经网络架构,它负责在2014年ImageNet大规模视觉识别挑战赛(ILSVRC14)中设置分类和检测的新技术。这种体系结构的主要特点是提高了网络内计算资源的利用率。这是通过精心设计来实现的,该设计允许增加网络的深度和宽度,同时保持计算预算不变。为了优化质量,架构决策基于Hebbian原则和多尺度处理的直觉。在我们提交的ILSVRC14中,我们使用了一个名为GoogLeNet的特殊化身,这是一个22层的深度网络,其质量是在分类和检测的背景下评估的。
2023-12-08 15:42:55
112
原创 Densely Connected Convolutional Networks(2018.1)
对于每一层,使用所有前一层的特征映射作为输入,并使用其自身的特征映射作为所有后续层的输入。缓解了梯度消失问题,加强了特征传播,鼓励特征重用,并大大减少了参数的数量
2023-12-07 21:16:07
156
原创 Distilling the Knowledge in a Neural Network(2015.5)(d补)
提高几乎所有机器学习算法性能的一种非常简单的方法是在相同的数据上训练许多不同的模型,然后对它们的预测进行平均[3]。不幸的是,使用整个模型集合进行预测是很麻烦的,而且可能计算成本太高,无法部署到大量用户,特别是如果单个模型是大型神经网络。Caruana和他的合作者[1]已经证明,可以将集成中的知识压缩到一个更容易部署的单一模型中,并且我们使用不同的压缩技术进一步开发了这种方法。我们在MNIST上取得了一些令人惊讶的结果,并且我们表明,
2023-12-06 20:12:05
128
1
yolo系列论文解读11
2023-11-29
Perseus 软件体系结构顶会,fast2023最佳两篇论文之一
2023-11-05
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人