吴恩达机器学习第一次作业——线性回归

一、单变量线性回归

1,线性回归

使用plotData.m,完成了对已加载数据集ex1data1.txt的可视化,反应在二维坐标中。

function plotData(x, y)
%PLOTDATA Plots the data points x and y into a new figure 
%   PLOTDATA(x,y) plots the data points and gives the figure axes labels of
%   population and profit.

figure; % open a new figure window
plot(x, y, 'rx', 'MarkerSize', 10);
ylabel('Profit in $10,000s'); % Set the y?axis label
xlabel('Population of City in 10,000s'); % Set the xxaxis label

% ============================================================

end

在这里插入图片描述
平面中存在零散的数据集,寻找数据集之间的联系,可以将数据集拟合成一条直线。

假设单变量线性回归的函数为:
h θ ( x ) = θ 0 + θ 1 x h_{\theta }(x)=\theta _{0}+\theta_{1}x hθ(x)=θ0+θ1x

我们程序也需要一个机制去评估我们θ是否比较好,所以说需要对我们做出的h函数进行评估,描述h函数不好的程度,在下面,我们称这个函数为代价函数为:
J ( θ ) = 1 2 m ∑ i = 1 m ( h θ ( x ( i ) ) − y ( i ) ) 2 J(\theta )=\frac{1}{2m}\sum_{i=1}^{m} (h_\theta(x^{(i)})-y^{(i)})^{2} J(θ)=2m1i=1m(hθ(x(i))y(i))2
自定义函数computeCost.m,编写这里分析的代价函数的公式

function J = computeCost(X, y, theta)
%COMPUTECOST Compute cost for linear regression
%   J = COMPUTECOST(X, y, theta) computes the cost of using theta as the
%   parameter for linear regression to fit the data points in X and y

% Initialize some useful values
m = length(y); % number of training examples

% You need to return the following variables correctly 
J = 0;

% ====================== YOUR CODE HERE ======================
% Instructions: Compute the cost of a particular choice of theta
%               You should set J to the cost.

J = sum((X*theta-y).^2)/(2*m);



% =========================================================================

end

希望得到最小的代价函数。此时得到的参数 θ \theta θ对应的线性拟合即为最佳拟合。

得到最小的代价函数的方法:梯度下降算法(Gradient descent algorithm)

2,梯度下降算法(Gradient descent algorithm)

循环下述赋值过程,直到 θ \theta θ收敛。
{
θ j : = θ j − α ∂ ∂ / θ j J ( θ ) \theta_j:=\theta_j-\alpha\frac{\partial }{\partial /\theta_j}J(\theta) θj:=θjα/θjJ(θ)
(for j=0 and j=1 ) }
其中 α \alpha α是机器学习效率。 α \alpha α的设置不能太大,只有当 α \alpha α足够小时,代价函数才会在经过每一次迭代后都会减小,知道收敛;但是 α \alpha α也不能太小, α \alpha α太小时,代价函数收敛的速度非常慢。
要求 θ 0 , θ 1 \theta_0,\theta_1 θ0,θ1同步更新
更新过程为:
t e m p 0 : = θ 0 − α ∂ ∂ / θ 0 J ( θ ) temp_0:=\theta_0-\alpha\frac{\partial }{\partial /\theta_0}J(\theta) temp0:=θ0α/θ0J(θ)
t e m p 1 : = θ 1 − α ∂ ∂ / θ 1 J ( θ ) temp_1:=\theta_1-\alpha\frac{\partial }{\partial /\theta_1}J(\theta) temp1:=θ1α/θ1J(θ)
θ 0 : = t e m p 0 \theta_0:=temp_0 θ0:=temp0
θ 1 : = t e m p 1 \theta_1:=temp_1 θ1:=temp1
其中,
∂ ∂ / θ j J ( θ ) = ∂ ∂ / θ j 1 2 m ∑ i = 1 m ( h θ ( x ( i ) ) − y ( i ) ) 2 \frac{\partial }{\partial /\theta_j}J(\theta)=\frac{\partial }{\partial /\theta_j}\frac{1}{2m}\sum_{i=1}^{m} (h_\theta(x^{(i)})-y^{(i)})^{2} /θjJ(θ)=/θj2m1i=1m(hθ(x(i))y(i))2

= 1 2 m ∑ i = 1 m ( θ 0 + θ 1 x ( i ) − y ( i ) ) 2 =\frac{1}{2m}\sum_{i=1}^{m}(\theta_0+\theta_1x^{(i)}-y^{(i)})^2 =2m1i=1m(θ0+θ1x(i)y(i))2
w h e n j = 0 when j=0 whenj=0
∂ ∂ / θ j J ( θ ) = 1 m ∑ i = 1 m ( h θ ( x ( i ) ) − y ( i ) ) \frac{\partial }{\partial /\theta_j}J(\theta)=\frac{1}{m}\sum_{i=1}^{m} (h_\theta(x^{(i)})-y^{(i)}) /θjJ(θ)=m1i=1m(hθ(x(i))y(i))
w h e n j = 1 when j=1 whenj=1
∂ ∂ / θ j J ( θ ) = 1 m ∑ i = 1 m ( h θ ( x ( i ) ) − y ( i ) ) x ( i ) \frac{\partial }{\partial /\theta_j}J(\theta)=\frac{1}{m}\sum_{i=1}^{m} (h_\theta(x^{(i)})-y^{(i)})x^{(i)} /θjJ(θ)=m1i=1m(hθ(x(i))y(i))x(i)
自定义函数gradientDescent.m,实现梯度下降循环赋值算法,根据前文分析同时更新 θ 0 , θ 1 \theta_0,\theta_1 θ0,θ1

function [theta, J_history] = gradientDescent(X, y, theta, alpha, num_iters)
%GRADIENTDESCENT Performs gradient descent to learn theta
%   theta = GRADIENTDESCENT(X, y, theta, alpha, num_iters) updates theta by 
%   taking num_iters gradient steps with learning rate alpha

% Initialize some useful values
m = length(y); % number of training examples
J_history = zeros(num_iters, 1);
theta_s=theta;

for iter = 1:num_iters

    % ====================== YOUR CODE HERE ======================
    % Instructions: Perform a single gradient step on the parameter vector
    %               theta. 
    %
    % Hint: While debugging, it can be useful to print out the values
    %       of the cost function (computeCost) and gradient here.
    %
    theta(1) = theta(1) - alpha / m * sum(X * theta_s - y);       
    theta(2) = theta(2) - alpha / m * sum((X * theta_s - y) .* X(:,2));     % 必须同时更新theta(1)和theta(2),所以不能用X * theta,而要用theta_s存储上次结果。
    
    theta_s=theta;



    % ============================================================

    % Save the cost J in every iteration    
    J_history(iter) = computeCost(X, y, theta);

end

end

3,可视化实现

%% Machine Learning Online Class - Exercise 1: Linear Regression

%  Instructions
%  ------------
%
%  This file contains code that helps you get started on the
%  linear exercise. You will need to complete the following functions
%  in this exericse:
%
%     warmUpExercise.m
%     plotData.m
%     gradientDescent.m
%     computeCost.m
%     gradientDescentMulti.m
%     computeCostMulti.m
%     featureNormalize.m
%     normalEqn.m
%
%  For this exercise, you will not need to change any code in this file,
%  or any other files other than those mentioned above.
%
% x refers to the population size in 10,000s
% y refers to the profit in $10,000s
%

%% Initialization
clear ; close all; clc

%% ==================== Part 1: Basic Function ====================
% Complete warmUpExercise.m
fprintf('Running warmUpExercise ... \n');
fprintf('5x5 Identity Matrix: \n');
warmUpExercise()

fprintf('Program paused. Press enter to continue.\n');
pause;


%% ======================= Part 2: Plotting =======================
fprintf('Plotting Data ...\n')
data = load('ex1data1.txt');
X = data(:, 1); y = data(:, 2);
m = length(y); % number of training examples

% Plot Data
% Note: You have to complete the code in plotData.m
plotData(X, y);

fprintf('Program paused. Press enter to continue.\n');
pause;

%% =================== Part 3: Cost and Gradient descent ===================

X = [ones(m, 1), data(:,1)]; % Add a column of ones to x
theta = zeros(2, 1); % initialize fitting parameters

% Some gradient descent settings
iterations = 1500;
alpha = 0.01;

fprintf('\nTesting the cost function ...\n')
% compute and display initial cost
J = computeCost(X, y, theta);
fprintf('With theta = [0 ; 0]\nCost computed = %f\n', J);
fprintf('Expected cost value (approx) 32.07\n');

% further testing of the cost function
J = computeCost(X, y, [-1 ; 2]);
fprintf('\nWith theta = [-1 ; 2]\nCost computed = %f\n', J);
fprintf('Expected cost value (approx) 54.24\n');

fprintf('Program paused. Press enter to continue.\n');
pause;

fprintf('\nRunning Gradient Descent ...\n')
% run gradient descent
theta = gradientDescent(X, y, theta, alpha, iterations);

% print theta to screen 
fprintf('Theta found by gradient descent:\n');
fprintf('%f\n', theta);
fprintf('Expected theta values (approx)\n');
fprintf(' -3.6303\n  1.1664\n\n');

% Plot the linear fit
hold on; % keep previous plot visible
plot(X(:,2), X*theta, '-')
legend('Training data', 'Linear regression')
hold off % don't overlay any more plots on this figure

% Predict values for population sizes of 35,000 and 70,000
predict1 = [1, 3.5] *theta;
fprintf('For population = 35,000, we predict a profit of %f\n',...
    predict1*10000);
predict2 = [1, 7] * theta;
fprintf('For population = 70,000, we predict a profit of %f\n',...
    predict2*10000);

fprintf('Program paused. Press enter to continue.\n');
pause;

%% ============= Part 4: Visualizing J(theta_0, theta_1) =============
fprintf('Visualizing J(theta_0, theta_1) ...\n')

% Grid over which we will calculate J
theta0_vals = linspace(-10, 10, 100);
theta1_vals = linspace(-1, 4, 100);
 
% initialize J_vals to a matrix of 0's
J_vals = zeros(length(theta0_vals), length(theta1_vals));

% Fill out J_vals
for i = 1:length(theta0_vals)
    for j = 1:length(theta1_vals)
	  t = [theta0_vals(i); theta1_vals(j)];
	  J_vals(i,j) = computeCost(X, y, t);
    end
end


% Because of the way meshgrids work in the surf command, we need to
% transpose J_vals before calling surf, or else the axes will be flipped
J_vals = J_vals';
% Surface plot
figure;
surf(theta0_vals, theta1_vals, J_vals)
xlabel('\theta_0'); ylabel('\theta_1');

% Contour plot
figure;
% Plot J_vals as 15 contours spaced logarithmically between 0.01 and 100
contour(theta0_vals, theta1_vals, J_vals, logspace(-2, 3, 20))
xlabel('\theta_0'); ylabel('\theta_1');
hold on;
plot(theta(1), theta(2), 'rx', 'MarkerSize', 10, 'LineWidth', 2);

根据最后收敛得到的 θ \theta θ参数,画出线性拟合的直线
在这里插入图片描述
得到的数据集的点零散分布在平面内,线性拟合一条直线,使这些点尽可能分布在这条线上或周围。
为了更好得理解 J ( θ ) J(\theta) J(θ),建立水平轴 θ o , θ 1 \theta_o,\theta_1 θo,θ1的空间坐标系,垂直轴为 J ( θ ) J(\theta) J(θ)的值,得到下图左。
代码为:

% initialize J vals to a matrix of 0's J vals = zeros(length(theta0 vals), length(theta1 vals));
% Fill out J vals
for i = 1:length(theta0 vals)
for j = 1:length(theta1 vals)
t = [theta0 vals(i); theta1 vals(j)];
J vals(i,j) = computeCost(x, y, t);
end
end

θ 0 \theta_0 θ0为横轴, θ 1 \theta_1 θ1为纵轴,得到 J ( θ ) J(\theta) J(θ)等高线图,得到下图右。图中红色点为 θ o , θ 1 \theta_o,\theta_1 θo,θ1收敛到最小处时的位置。
在这里插入图片描述

二、多变量线性回归

1,回归方程

多变量线性回归方程与单变量线性回归假设的方程类似,区别在于前者的变量较多:
h θ ( x ) = θ 0 + θ 1 x 1 + θ 2 x 2 + θ 3 x 3 + . . . + θ n x n h_{\theta }(x)=\theta _{0}+\theta_{1}x_1+\theta_{2}x_2+\theta_3x_3+...+\theta_nx_n hθ(x)=θ0+θ1x1+θ2x2+θ3x3+...+θnxn
为了后面的运算,在这里我们可以令 x 0 = 1 x_0=1 x0=1,将 θ , x \theta,x θ,x视为向量
可以得到
h θ ( x ) = θ T x h_\theta(x)=\theta^{T}x hθ(x)=θTx
多变量线性回归的代价函数为:
J ( θ ) = 1 2 m ∑ i = 1 m ( h θ ( x ( i ) ) − y ( i ) ) 2 J(\theta )=\frac{1}{2m}\sum_{i=1}^{m} (h_\theta(x^{(i)})-y^{(i)})^{2} J(θ)=2m1i=1m(hθ(x(i))y(i))2

2,缩小特征

为了使梯度下降算法收敛得足够快,需要对缩小特征。

function [X_norm, mu, sigma] = featureNormalize(X)
%FEATURENORMALIZE Normalizes the features in X 
%   FEATURENORMALIZE(X) returns a normalized version of X where
%   the mean value of each feature is 0 and the standard deviation
%   is 1. This is often a good preprocessing step to do when
%   working with learning algorithms.

% You need to set these values correctly
X_norm = X;
mu = zeros(1, size(X, 2));
sigma = zeros(1, size(X, 2));

% ====================== YOUR CODE HERE ======================
% Instructions: First, for each feature dimension, compute the mean
%               of the feature and subtract it from the dataset,
%               storing the mean value in mu. Next, compute the 
%               standard deviation of each feature and divide
%               each feature by it's standard deviation, storing
%               the standard deviation in sigma. 
%
%               Note that X is a matrix where each column is a 
%               feature and each row is an example. You need 
%               to perform the normalization separately for 
%               each feature. 
%
% Hint: You might find the 'mean' and 'std' functions useful.
%       
mu=X(:,1);
sigma=X(:,2);
mu = (mu-mean(mu))/std(mu);
sigma = (sigma-mean(sigma))/std(sigma);
X_norm=[mu,sigma];
% ============================================================

end

3,梯度下降算法的实现

首先要计算代价函数,根据公式, J ( θ ) = 1 2 m ∑ i = 1 m ( h θ ( x ( i ) ) − y ( i ) ) 2 J(\theta )=\frac{1}{2m}\sum_{i=1}^{m} (h_\theta(x^{(i)})-y^{(i)})^{2} J(θ)=2m1i=1m(hθ(x(i))y(i))2自定义函数computeCostMulti.m

function J = computeCostMulti(X, y, theta)
%COMPUTECOSTMULTI Compute cost for linear regression with multiple variables
%   J = COMPUTECOSTMULTI(X, y, theta) computes the cost of using theta as the
%   parameter for linear regression to fit the data points in X and y
% Initialize some useful values
m = length(y); % number of training examples
% You need to return the following variables correctly 
J = 0;
% ====================== YOUR CODE HERE ======================
% Instructions: Compute the cost of a particular choice of theta
%               You should set J to the cost.
J = sum((X*theta-y).^2)/(2*m);
% =========================================================================
end

自定义gradientDescentMulti.m函数实现梯度下降算法
与单变量回归的梯度算法相同,都是每次迭代后需要同时 θ \theta θ值,
{
θ j : = θ j − α ∂ ∂ / θ j J ( θ ) \theta_j:=\theta_j-\alpha\frac{\partial }{\partial /\theta_j}J(\theta) θj:=θjα/θjJ(θ)
(for j=0 and j=1 ) }

function [theta, J_history] = gradientDescentMulti(X, y, theta, alpha, num_iters)
%GRADIENTDESCENTMULTI Performs gradient descent to learn theta
%   theta = GRADIENTDESCENTMULTI(x, y, theta, alpha, num_iters) updates theta by
%   taking num_iters gradient steps with learning rate alpha

% Initialize some useful values
m = length(y); % number of training examples
J_history = zeros(num_iters, 1);

for iter = 1:num_iters

    % ====================== YOUR CODE HERE ======================
    % Instructions: Perform a single gradient step on the parameter vector
    %               theta. 
    %
    % Hint: While debugging, it can be useful to print out the values
    %       of the cost function (computeCostMulti) and gradient here.
    %

theta = theta -alpha/m*X'*(X*theta-y);
    
    % ============================================================

    % Save the cost J in every iteration    
    J_history(iter) = computeCostMulti(X, y, theta);

end


画出随着迭代次数的增加( α = 0.01 \alpha=0.01 α=0.01),代价损失下降的关系
在这里插入图片描述
可以看到随着迭代更替,代价损失逐渐减少,直至收敛。
再增大学习效率的值 α \alpha α( α = 0.1 \alpha=0.1 α=0.1),得到图像如下,会发现代价函数收敛速度大大加快。
在这里插入图片描述
减小学习效率的值 α \alpha α( α = 0.001 \alpha=0.001 α=0.001),得到图像如下,会发现代价函数收敛速度变缓。
在这里插入图片描述

附上多变量线性回归的完整实现代码

%% Machine Learning Online Class
%  Exercise 1: Linear regression with multiple variables
%
%  Instructions
%  ------------
% 
%  This file contains code that helps you get started on the
%  linear regression exercise. 
%
%  You will need to complete the following functions in this 
%  exericse:
%
%     warmUpExercise.m
%     plotData.m
%     gradientDescent.m
%     computeCost.m
%     gradientDescentMulti.m
%     computeCostMulti.m
%     featureNormalize.m
%     normalEqn.m
%
%  For this part of the exercise, you will need to change some
%  parts of the code below for various experiments (e.g., changing
%  learning rates).
%

%% Initialization

%% ================ Part 1: Feature Normalization ================

%% Clear and Close Figures
clear ; close all; clc

fprintf('Loading data ...\n');

%% Load Data
data = load('ex1data2.txt');
X = data(:, 1:2);
y = data(:, 3);
m = length(y);

% Print out some data points
fprintf('First 10 examples from the dataset: \n');
fprintf(' x = [%.0f %.0f], y = %.0f \n', [X(1:10,:) y(1:10,:)]');

fprintf('Program paused. Press enter to continue.\n');
pause;

% Scale features and set them to zero mean
fprintf('Normalizing Features ...\n');

[X mu sigma] = featureNormalize(X);

% Add intercept term to X
X = [ones(m, 1) X];


%% ================ Part 2: Gradient Descent ================

% ====================== YOUR CODE HERE ======================
% Instructions: We have provided you with the following starter
%               code that runs gradient descent with a particular
%               learning rate (alpha). 
%
%               Your task is to first make sure that your functions - 
%               computeCost and gradientDescent already work with 
%               this starter code and support multiple variables.
%
%               After that, try running gradient descent with 
%               different values of alpha and see which one gives
%               you the best result.
%
%               Finally, you should complete the code at the end
%               to predict the price of a 1650 sq-ft, 3 br house.
%
% Hint: By using the 'hold on' command, you can plot multiple
%       graphs on the same figure.
%
% Hint: At prediction, make sure you do the same feature normalization.
%

fprintf('Running gradient descent ...\n');

% Choose some alpha value
alpha = 0.01;
num_iters = 400;

% Init Theta and Run Gradient Descent 
theta = zeros(3, 1);
[theta, J_history] = gradientDescentMulti(X, y, theta, alpha, num_iters);

% Plot the convergence graph
figure;
plot(1:numel(J_history), J_history, '-b', 'LineWidth', 2);
xlabel('Number of iterations');
ylabel('Cost J');

% Display gradient descent's result
fprintf('Theta computed from gradient descent: \n');
fprintf(' %f \n', theta);
fprintf('\n');

% Estimate the price of a 1650 sq-ft, 3 br house
% ====================== YOUR CODE HERE ======================
% Recall that the first column of X is all-ones. Thus, it does
% not need to be normalized.
price = 0; % You should change this


% ============================================================

fprintf(['Predicted price of a 1650 sq-ft, 3 br house ' ...
         '(using gradient descent):\n $%f\n'], price);

fprintf('Program paused. Press enter to continue.\n');
pause;

%% ================ Part 3: Normal Equations ================

fprintf('Solving with normal equations...\n');

% ====================== YOUR CODE HERE ======================
% Instructions: The following code computes the closed form 
%               solution for linear regression using the normal
%               equations. You should complete the code in 
%               normalEqn.m
%
%               After doing so, you should complete this code 
%               to predict the price of a 1650 sq-ft, 3 br house.
%

%% Load Data
data = csvread('ex1data2.txt');
X = data(:, 1:2);
y = data(:, 3);
m = length(y);

% Add intercept term to X
X = [ones(m, 1) X];

% Calculate the parameters from the normal equation
theta = normalEqn(X, y);

% Display normal equation's result
fprintf('Theta computed from the normal equations: \n');
fprintf(' %f \n', theta);
fprintf('\n');


% Estimate the price of a 1650 sq-ft, 3 br house
% ====================== YOUR CODE HERE ======================
price = 0; % You should change this


% ============================================================

fprintf(['Predicted price of a 1650 sq-ft, 3 br house ' ...
         '(using normal equations):\n $%f\n'], price);


在这里插入图片描述
在这里插入图片描述
总结
从实验结果看到,正则化与梯度下降法得到的 θ \theta θ不同,下面对两种方法进行比较
在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值