【经验贴】计算第二类曲面积分

  • 博主简介:一名想上成电硕士的大二本科生

  • 作者说:由于这是高数蒟蒻的第一篇经验贴,可能有很多不足,欢迎各位数学大神指出我的错误,让我们共同学习。也希望这篇文章能帮助到你,不管是考研的师兄师姐,还是期末考试的学弟学妹。

  • 这一句:你充满了绝望,这使你充满了决心。

 

目录

 

法一:合一投影法

前置知识

例题讲解                                            ​​​​

法二:高斯公式求解

前置知识

例题讲解​

法三:利用两类曲面积分的关系计算

前置知识

         例题讲解

总结

法一:合一投影法

前置知识

这是第一种常用的方法(2020年数一第18题有所考察

如果定曲面\Sigma方程z = z(x,y)给出,\Sigma在平面xOy上的投影区域为D_{xy},z(x, y)在D_{xy}上有连续的偏导数,关于x,y,z的方程P,Q,R在\Sigma上连续,那么就有:

          ​​​   \iint_\Sigma {}^{}Pdydz+Qdxdz+Rdxdy =\\ {\iint_\Sigma {}^{}[P(x,y,z(x,y))(-\frac{\partial z}{\partial x})+Q(x,y,z(x,y))(-\frac{\partial z}{\partial y})+R(x,y,z(x,y))]dxdy}

那么这样就能转化为二重积分,继而得到:

        {\iint_\Sigma {}^{}[P(x,y,z(x,y))(-\frac{\partial z}{\partial x})+Q(x,y,z(x,y))(-\frac{\partial z}{\partial y})+R(x,y,z(x,y))]dxdy}=\pm {\iint_{^D{xy}} {}^{}[P(x,y,z(x,y))(-\frac{\partial z}{\partial x})+Q(x,y,z(x,y))(-\frac{\partial z}{\partial y})+R(x,y,z(x,y))]dxdy}

注意: 其中的正负号由\Sigma的方向确定:法向量指向上侧取正号,反之取符号。当然也可以取投影到其他面上也是个可以的,也能类比以上的方法来做。

设曲面\Sigma由方程z = z(x, y)给出,当\Sigma下侧时,能得到以下式子:

                cos\alpha =\frac{-{z_{x}}'}{\sqrt{1+{z_{x}}'^{2}+{z_{y}}'^{2}}}       cos\beta =\frac{-{z_{y}}'}{\sqrt{1+{z_{x}}'^{2}+{z_{y}}'^{2}}}         cos\gamma =\frac{1}{\sqrt{1+{z_{x}}'^{2}+{z_{y}}'^{2}}}

而           

                 dydz=\frac{cos\alpha }{cos\gamma }dxdy=-{z_{x}}'dxdy        dxdz=\frac{cos\beta }{cos\gamma }dxdy=-{z_{y}}'dxdy

所以最后能得到               

                                 \iint_\Sigma {}^{}Pdydz+Qdxdz+Rdxdy =\\ {\iint_\Sigma {}^{}(-{z_{x}}'P-{z_{y}}'Q+R)dxdy}=\\ -\iint_{D_{xy}}{}^{}(-{z_{x}}'P-{z_{y}}'Q+R)dxdy

例题讲解                                         

        ​​​​​​

  • 先分析:由于只给出f(x)连续,并不一定可偏导,所以不能用高斯公式补齐,所以采用合一投影法解决。然后给出x^{2}y^{2}的范围,那我们就考虑投影到xOy平面上。

那么思路清晰,接下来开始解决。

先求出方向向量

                \vec{n}=({z_{x}}',{z_{y}}',-1)那么可以得到\vec{n}=(\frac{x}{\sqrt{x^{2}+y^{2}}},\frac{y}{\sqrt{x^{2}+y^{2}}},-1)

进而求出单位向量

                \vec{a}=\frac{1}{\sqrt{2}}(\frac{x}{\sqrt{x^{2}+y^{2}}},\frac{y}{\sqrt{x^{2}+y^{2}}},-1)  这里三个值分别是 cos\alpha,cos\beta,cos\gamma

根据

                dydz=\frac{cos\alpha }{cos\gamma }dxdydxdz=\frac{cos\beta }{cos\gamma }dxdy就可以进行转化

得到

                dydz=-\frac{x}{\sqrt{x^{2}+y^{2}}}dxdy

        ​​​​​​​        dxdz=-\frac{y}{\sqrt{x^{2}+y^{2}}}dxdy

原式

I=\iint_\Sigma {}^{}{[xf(xy)+2x-y](-\frac{x}{\sqrt{x^{2}+y^{2}}})+[yf(xy)+2y+x](-\frac{y}{\sqrt{x^{2}+y^{2}}})+[\sqrt{x^{2}+y^{2}}f(xy)+\sqrt{x^{2}+y^{2}}]}dxdy

根据对称性

I={\iint_\Sigma {}^{}(-\frac{x^{2}}{\sqrt{x^{2}+y^{2}}}f(xy))-\frac{2x^{2}}{\sqrt{x^{2}+y^{2}}}-\frac{y^{2}}{\sqrt{x^{2}+y^{2}}}f(xy)-\frac{2y^{2}}{\sqrt{x^{2}+y^{2}}}+\sqrt{x^{2}+y^{2}}f(xy)+\sqrt{x^{2}+y^{2}}}dxdy

合并得到

        ​​​​​​​        ​​​​​​​        ​​​​​​​        ​​​​​​​        ​​​​​​​        I=\iint_\Sigma {}^{}-\sqrt{x^{2}+y^{2}}dxdy

由于指向曲面的下侧,所以转化为二重积分需要取负号

        ​​​​​​​        ​​​​​​​        ​​​​​​​        ​​​​​​​        ​​​​​​​        I=\iint_{D_{xy}}{}^{}\sqrt{x^{2}+y^{2}}dxdy

投影区域是一个圆环,所以选择极坐标系下的二重积分

        ​​​​​​​        ​​​​​​​        ​​​​​​​        ​​​​​​​        ​​​​​​​        I=\int_{0}^{2\pi }d\theta \int_{1}^{2}r^{2}dr\\ =\frac{14}{3}\pi

美美完成!!!

法二:高斯公式求解

前置知识

这是最常用的知识点(2023年数一19题有所考察)

设空间闭区域是由分片光滑的闭曲面\Sigma所围成,函数P,Q,R在区域\Omega上具有一阶连续偏导数,那么就有

        ​​​​​​​        \SigmaPdydz+Qdxdz+Rdxdy=\iiint_\Omega {}^{}(\frac{\partial P}{\partial x}+\frac{\partial Q}{\partial y}+\frac{\partial R}{\partial z})dV

同时也有

        ​​​​​​​        \iint_\Sigma {}^{}(Pcos\alpha +Qcos\beta +Rcos\gamma )dS=\iiint_\Omega {}^{}(\frac{\partial P}{\partial x}+\frac{\partial Q}{\partial y}+\frac{\partial R}{\partial z})dV

注意:使用高斯公式必须是封闭的,但是题目常常给出的并不封闭,所以我们常常选择补充一个面使其封闭,进而继续接下来的操作。

例题讲解

先分析:此题目有明确的连续和可偏导关系,并且投影区域较为简单,而且是严格的封闭区域,所以我们考虑使用高斯公式求解。

所以,思路清晰,就来求解

        ​​​​​​​        ​​​​​​​ P=2xy     Q=xzcosy        R=3yzsinx

原式

        ​​​​​​​        I=\iiint_\Omega {}^{}(\frac{\partial P}{\partial x}+\frac{\partial Q}{\partial y}+\frac{\partial R}{\partial z})dV=\iiint_\Omega {}^{}(2z-xzsiny+3ysinx)dxdydz

注意到:积分区域关于xOz平面对称,同时ysiny都是奇函数,所以根据对称性,可以化简得到

        ​​​​​​​        I=\iiint_\Omega {}^{}2zdxdydz

最后让我们美美求解吧

        ​​​​​​​        I=\iint_{x^{2}+y^{2}\leqslant 1}{}^{}dxdy\int_{0}^{1-x}2zdz=\iint_{x^{2}+y^{2}\leqslant 1}{}^{}(1-2x+x^{2})dxdy

积分区域是一个圆,我们选择极坐标来求解

        ​​​​​​​        I=\int_{0}^{2\pi }d\theta \int_{0}^{1}[1-2rcos\theta +(rcos\theta )^{2}]rdr=\frac{5\pi }{4}

美美结束!!!

法三:利用两类曲面积分的关系计算

前置知识

实际上,第二类曲面积分和第一类曲面积分是可以互相转化的。可以先求出曲面\Sigma上侧的方向余弦cos\alphacos\betacos\gamma,然后通过

        ​​​​​​​        I=\iint_\Sigma {}^{}Pdydz+Qdxdz+Rdxdy=\iint_\Sigma {}^{}(Pcos\alpha +Qcos\beta +Rcos\gamma )dS

来转化,当曲面\Sigma为平面时,这一方法会使解题的过程变得相对简单。当\Sigma上任意一点的法向量的方向余弦为常数时,常常选用此方法来进行解题。

例题讲解

计算

                ​​​​​​​I=\iint_\Sigma {}^{}[f(x,y,z)+x]dydz+[2f(x,y,z)+y]dzdy+[f(x,y,z)+z]dxdy

其中f(x,y,z)连续,\Sigma为平面x-y+z=1在第四象限部分的上侧。

先分析:f(x,y,z)是连续的,不一定可偏导,所以我们不采用高斯公式来求解,应该优先考虑合一投影法。当然本题合一投影法完全能解,但是\Sigma上任意一点的法向量的方向余弦是常数,所以我们还需要考虑将第二类曲面积分转化为第一类曲面积分来求解。

 思路清晰,就来求解

平面\Sigma的法向量\vec{n}=(1,-1,1)所以能得到它的方向余弦

        ​​​​​​​        ​​​​​​​        ​​​​​​​        ​​​​​​​        cos\alpha =\frac{1}{\sqrt{3}}cos\beta =-\frac{1}{\sqrt{3}}cos\gamma =\frac{1}{\sqrt{3}}

根据前置知识里的公式能够得到

        ​​​​​​​     I={\iint_\Sigma {}^{}[f(x,y,z)+x]cos\alpha +[2f(x,y,z)+y]cos\beta +[f(x,y,z)+z]cos\gamma }dS

        ​​​​​​​        ​​​​​​​ =\frac{1}{\sqrt{3}}{\iint_\Sigma {}^{}[f(x,y,z)+x] -[2f(x,y,z)+y]+[f(x,y,z)+z] }dS

化简得到

        ​​​​​​​     I=\frac{1}{\sqrt{3}}\iint_\Sigma {}^{}(x-y+z)dS

        ​​​​​​​         =\frac{1}{\sqrt{3}}\iint_\Sigma {}^{}dS

z=1-x+y得到{z_{x}}'{z_{y}}',又由公式dS=\sqrt{1+{z_{x}}'+{z_{y}}'}dxdy得到

        ​​​​​​​        ​​​​​​​        ​​​​​​​        ​​​​​​​        ​​​​​​​        ​​​​​​​        ​​​​​​​dS=\sqrt{3}dxdy

所以最后

        ​​​​​​​        I=\frac{1}{\sqrt{3}}\iint_\Sigma {}^{}dS=\frac{\sqrt{3}}{\sqrt{3}}\iint_{D_{xy}}{}^{}dxdy=\iint_{D_{xy}}{}^{}dxdy

我们发现就是求xOy上的投影面积,所以

        ​​​​​​​        ​​​​​​​        ​​​​​​​        ​​​​​​​        ​​​​​​​        ​​​​​​​        I=\frac{1}{2}

美美结束!!!

ps. 这里附上合一投影法的解法,忘了的小伙伴可以往回看看法一哦!

先求单位向量

                              cos\alpha =-\frac{1}{\sqrt{3}}cos\beta =\frac{1}{\sqrt{3}}cos\gamma =-\frac{1}{\sqrt{3}}

得到

I={\iint_\Sigma {}^{}[f(x,y,1-x+y)+x]*1+[2f(x,y,1-x+y)+y]*(-1)+[f(x,y,1-x+y)+1-x+y]dxdy}

整理得到

        ​​​​​​​        ​​​​​​​        ​​​​​​​                                I=\iint_\Sigma {}^{}dxdy\\ =\iint_{D_{xy}}{}^{}dxdy

所以最后也就是求xOy上的面积

        ​​​​​​​        ​​​​​​​        ​​​​​​​                                I=\frac{1}{2}

解毕

总结

这三种都是比较常用的方法,所以都是需要牢牢掌握的。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值