博主简介:一名想上成电硕士的大二本科生
作者说:由于这是高数蒟蒻的第一篇经验贴,可能有很多不足,欢迎各位数学大神指出我的错误,让我们共同学习。也希望这篇文章能帮助到你,不管是考研的师兄师姐,还是期末考试的学弟学妹。
这一句:你充满了绝望,这使你充满了决心。
目录
法一:合一投影法
前置知识
这是第一种常用的方法(2020年数一第18题有所考察)
如果定曲面方程z = z(x,y)给出,
在平面xOy上的投影区域为
,z(x, y)在
上有连续的偏导数,关于x,y,z的方程P,Q,R在
上连续,那么就有:
那么这样就能转化为二重积分,继而得到:
注意: 其中的正负号由的方向确定:法向量指向上侧取正号,反之取符号。当然也可以取投影到其他面上也是个可以的,也能类比以上的方法来做。
设曲面由方程z = z(x, y)给出,当
取下侧时,能得到以下式子:
而
所以最后能得到
例题讲解

- 先分析:由于只给出
连续,并不一定可偏导,所以不能用高斯公式补齐,所以采用合一投影法解决。然后给出
和
的范围,那我们就考虑投影到
平面上。
那么思路清晰,接下来开始解决。
先求出方向向量
那么可以得到
进而求出单位向量
这里三个值分别是
,
,
根据
和
就可以进行转化
得到
原式
根据对称性
合并得到
由于指向曲面的下侧,所以转化为二重积分需要取负号
投影区域是一个圆环,所以选择极坐标系下的二重积分
美美完成!!!
法二:高斯公式求解
前置知识
这是最常用的知识点(2023年数一19题有所考察)
设空间闭区域是由分片光滑的闭曲面所围成,函数P,Q,R在区域
上具有一阶连续偏导数,那么就有
∯
同时也有
注意:使用高斯公式必须是封闭的,但是题目常常给出的并不封闭,所以我们常常选择补充一个面使其封闭,进而继续接下来的操作。
例题讲解
先分析:此题目有明确的连续和可偏导关系,并且投影区域较为简单,而且是严格的封闭区域,所以我们考虑使用高斯公式求解。
所以,思路清晰,就来求解
原式
注意到:积分区域关于平面对称,同时
和
都是奇函数,所以根据对称性,可以化简得到
最后让我们美美求解吧
积分区域是一个圆,我们选择极坐标来求解
美美结束!!!
法三:利用两类曲面积分的关系计算
前置知识
实际上,第二类曲面积分和第一类曲面积分是可以互相转化的。可以先求出曲面上侧的方向余弦
,
,
,然后通过
来转化,当曲面为平面时,这一方法会使解题的过程变得相对简单。当
上任意一点的法向量的方向余弦为常数时,常常选用此方法来进行解题。
例题讲解
计算
,
其中连续,
为平面
在第四象限部分的上侧。
先分析:
是连续的,不一定可偏导,所以我们不采用高斯公式来求解,应该优先考虑合一投影法。当然本题合一投影法完全能解,但是
上任意一点的法向量的方向余弦是常数,所以我们还需要考虑将第二类曲面积分转化为第一类曲面积分来求解。
思路清晰,就来求解
平面的法向量
所以能得到它的方向余弦
,
,
根据前置知识里的公式能够得到
化简得到
由得到
和
,又由公式
得到
所以最后
我们发现就是求上的投影面积,所以
美美结束!!!
ps. 这里附上合一投影法的解法,忘了的小伙伴可以往回看看法一哦!
先求单位向量
,
,
得到
整理得到
所以最后也就是求上的面积
解毕
总结
这三种都是比较常用的方法,所以都是需要牢牢掌握的。