第二类曲面积分几何意义:通量
计算
向量之间的点乘(向量A·向量S)是矢量化步骤,得到Pdydz+Qdzdx+Rdxdy(PQR是向量在三个方向的大小),斜场对于斜面通量=斜场分量对于斜面分量的和
联系
由于第一类曲面积分的几何意义是曲顶柱体的体积,所以用体积来表示更加直观。
取一项,Rdxdy为高R底dxdy柱体的体积,数值上等于高Rcos gamma底ds的体积(以直代曲的条件下)
第二类曲面积分几何意义:通量
计算
向量之间的点乘(向量A·向量S)是矢量化步骤,得到Pdydz+Qdzdx+Rdxdy(PQR是向量在三个方向的大小),斜场对于斜面通量=斜场分量对于斜面分量的和
联系
由于第一类曲面积分的几何意义是曲顶柱体的体积,所以用体积来表示更加直观。
取一项,Rdxdy为高R底dxdy柱体的体积,数值上等于高Rcos gamma底ds的体积(以直代曲的条件下)