高等数学笔记-苏德矿-第十章-曲线积分和曲面积分-第六节-第二类曲面积分

高等数学笔记-苏德矿

第十章 曲线积分和曲面积分

一、第二类曲面积分的概念

01 解决问题前的基本概念

在这里插入图片描述

(1) 流量的概念

平面的面积为 S S S π \pi π 的法向量为 n ⃗ \vec{n} n 与指定的方向一致。

流体的流速 v ⃗ \vec{v} v (常向量),且 v ⃗ ∥ n ⃗ \vec{v}\parallel\vec{n} v n 方向一致,流体的密度为 μ 0 \mu_0 μ0 (常数) 。

称流体单位时间通过平面指定侧流体的质量为流量,记作 Q Q Q Q = S ∣ v ⃗ ∣ μ 0 Q=S|\vec{v}|\mu_0 Q=Sv μ0

(2) 有夹角的流量

不同的地方 v ⃗ \vec{v} v n ⃗ \vec{n} n 的夹角为 θ \theta θ 0 ⩽ θ ⩽ π 0\leqslant\theta\leqslant\pi 0θπ,, Q = ( v ⃗ ⋅ n 0 ⃗ ) S μ 0 Q=(\vec{v}\cdot\vec{n^0})S\mu_0 Q=(v n0 )Sμ0

02 由问题引入积分的定义
(1) 曲面的基本条件

Σ \Sigma Σ 为有界光滑曲面, ∀   M ( x , y , z ) ∈ Σ \forall\ M(x,y,z)\in\Sigma  M(x,y,z)Σ,在 M M M 点的单位法向量 n 0 ⃗ ( x , y , z ) = { cos ⁡ α , cos ⁡ β , cos ⁡ γ } \vec{n^0}(x,y,z)=\{\cos\alpha,\cos\beta,\cos\gamma\} n0 (x,y,z)={cosα,cosβ,cosγ}

且与 Σ \Sigma Σ 指定的方向一致。

(2) 问题描述

有一个流体通过曲面 Σ \Sigma Σ ,通过 Σ \Sigma Σ 上点 M ( x , y , z ) M(x,y,z) M(x,y,z) 处的流速为 v ⃗ \vec{v} v

v ⃗ = { v x ( x , y , z ) , v y ( x , y , z ) , v z ( x , y , z ) } \vec{v}=\{v_x(x,y,z),v_y(x,y,z),v_z(x,y,z)\} v ={vx(x,y,z),vy(x,y,z),vz(x,y,z)} ( v x   ,   v y   ,   v z v_x\ , \ v_y\ , \ v_z vx , vy , vz 连续),

密度为 μ ( x , y , z ) \mu(x,y,z) μ(x,y,z) 连续,求流体通过曲面 Σ \Sigma Σ 指定侧的流量 Q Q Q

(3) 问题分析

总流量 Q Q Q 具有总量等于部分量之和的特点,可以用微元法。

① 取面积微元

Q Q Q 分布在曲面 Σ \Sigma Σ 上, ∀   d S ⊂ Σ \forall\ dS\subset\Sigma  dSΣ d S dS dS 的大小仍记为 d S dS dS ∀   M ( x , y , z ) ∈ d S \forall\ M(x,y,z)\in dS  M(x,y,z)dS

② 近似处理

d S dS dS 看成在 M ( x , y , z ) M(x,y,z) M(x,y,z) 点的切平面上,面积仍记为 d S dS dS n 0 ⃗ ( x , y , z ) = { cos ⁡ α , cos ⁡ β , cos ⁡ γ } \vec{n^0}(x,y,z)=\{\cos\alpha,\cos\beta,\cos\gamma\} n0 (x,y,z)={cosα,cosβ,cosγ}

Σ \Sigma Σ 指定的方向一致。通过 d S dS dS 的流速看成在 M ( x , y , z ) M(x,y,z) M(x,y,z) 点的流速 v ⃗ = { v x , v y , v z } \vec{v}=\{v_x,v_y,v_z\} v ={vx,vy,vz},点的密度 μ ( x , y , z ) \mu(x,y,z) μ(x,y,z)

③ 求流量微元

求通过 d S dS dS 的流量 Δ Q \Delta Q ΔQ 的等价量 d Q dQ dQ

( Δ Q ≈ ) d Q = ( v ⃗ ⋅ n 0 ⃗ ) d S μ = μ ( v ⃗ ⋅ n 0 ⃗ ) d S   ,   ( x , y , z ) ∈ Σ (\Delta Q\approx)dQ=(\vec{v}\cdot\vec{n^0})dS\mu=\mu(\vec{v}\cdot\vec{n^0})dS\ , \ (x,y,z)\in\Sigma (ΔQ)dQ=(v n0 )dSμ=μ(v n0 )dS , (x,y,z)Σ ,则 Q = ∬ Σ μ ( v ⃗ ⋅ n 0 ⃗ ) d S = ∬ Σ ( μ v ⃗ ⋅ n 0 ⃗ ) d S Q=\iint\limits_{\Sigma}\mu(\vec{v}\cdot\vec{n^0})dS=\iint\limits_{\Sigma}(\mu\vec{v}\cdot\vec{n^0})dS Q=Σμ(v n0 )dS=Σ(μv n0 )dS

μ v ⃗ = A ⃗ ( x , y , z ) = { μ v x , μ v y , μ v z } = ∬ Σ ( A ⃗ ⋅ n 0 ⃗ ) d S \mu\vec{v}=\vec{A}(x,y,z)=\{\mu v_x,\mu v_y,\mu v_z\}=\iint\limits_{\Sigma}(\vec{A}\cdot\vec{n^0})dS μv =A (x,y,z)={μvx,μvy,μvz}=Σ(A n0 )dS,称 A ⃗ ( x , y , z ) \vec{A}(x,y,z) A (x,y,z) 沿曲面 Σ \Sigma Σ 指定侧的第二类曲面积分。

03 给出第二类曲面积分的定义

Σ \Sigma Σ 是有界分片光滑曲面, A ⃗ ( x , y , z ) = { P ( x , y , z ) , Q ( x , y , z ) , R ( x , y , z ) } \vec{A}(x,y,z)=\{P(x,y,z),Q(x,y,z),R(x,y,z)\} A (x,y,z)={P(x,y,z),Q(x,y,z),R(x,y,z)}

定义在 Σ \Sigma Σ 上的向量且有界 ( P   ,   Q   ,   R P\ , \ Q\ , \ R P , Q , R 有界), ( x , y , z ) ∈ Σ (x,y,z)\in\Sigma (x,y,z)Σ 处的单位法向量,

n 0 ⃗ ( x , y , z ) = { cos ⁡ α , cos ⁡ β , cos ⁡ γ } \vec{n^0}(x,y,z)=\{\cos\alpha,\cos\beta,\cos\gamma\} n0 (x,y,z)={cosα,cosβ,cosγ} 与指定的侧一致,若 ∬ Σ ( A ⃗ ⋅ n 0 ⃗ ) d S \iint\limits_{\Sigma}(\vec{A}\cdot\vec{n^0})dS Σ(A n0 )dS 存在,

该积分值称为 A ⃗ \vec{A} A 沿曲面 Σ \Sigma Σ 指定侧的第二类曲面积分向量值曲面积分

二、第二类曲面积分的定理和性质

01 第二类曲面积分的物理意义

一个光滑曲面 Σ \Sigma Σ M ( x , y , z ) M(x,y,z) M(x,y,z) 处的单位法向量 n 0 ⃗ ( x , y , z ) = { cos ⁡ α , cos ⁡ β , cos ⁡ γ } \vec{n^0}(x,y,z)=\{\cos\alpha,\cos\beta,\cos\gamma\} n0 (x,y,z)={cosα,cosβ,cosγ} 且与指定的方向一致,

有一个流体通过曲面 Σ \Sigma Σ 上点 M ( x , y , z ) M(x,y,z) M(x,y,z) 处流速为 v ⃗ = { v x , v y , v z } \vec{v}=\{v_x,v_y,v_z\} v ={vx,vy,vz},点的密度 μ ( x , y , z ) \mu(x,y,z) μ(x,y,z)

则流体通过 Σ \Sigma Σ 指定侧的流量 Q = ∬ Σ ( μ v ⃗ ) ⋅ n 0 ⃗ d S Q=\iint\limits_{\Sigma}(\mu\vec{v})\cdot\vec{n^0}dS Q=Σ(μv )n0 dS,求流体的体积 V V V V = ∬ Σ ( v ⃗ ⋅ n 0 ⃗ ) d S V=\iint\limits_{\Sigma}(\vec{v}\cdot\vec{n^0})dS V=Σ(v n0 )dS

若密度是均质的且为 μ 0 \mu_0 μ0,则 Q = V μ 0 Q=V\mu_0 Q=Vμ0

02 第二类曲面积分的性质

在第二类曲面积分 ∬ Σ ( A ⃗ ⋅ n 0 ⃗ ) d S \iint\limits_{\Sigma}(\vec{A}\cdot\vec{n^0})dS Σ(A n0 )dS 中,如果把 A ⃗ ⋅ n 0 ⃗ \vec{A}\cdot\vec{n^0} A n0 看成一个数量函数,这个积分就是第一类曲面积分,具有点函数的所有性质。

如果看成 A ⃗ \vec{A} A 沿曲面 Σ \Sigma Σ 指定侧的第二类曲面积分,有下面两个特有的性质:

性质1: ∬ Σ + ( A ⃗ ⋅ n 0 ⃗ ) d S = − ∬ Σ − ( A ⃗ ⋅ n 0 ⃗ ) d S \iint\limits_{\Sigma^+}(\vec{A}\cdot\vec{n^0})dS=-\iint\limits_{\Sigma^-}(\vec{A}\cdot\vec{n^0})dS Σ+(A n0 )dS=Σ(A n0 )dS

性质2: ∬ Σ ( A ⃗ ⋅ n 0 ⃗ ) d S = ∬ Σ 1 ( A ⃗ ⋅ n 0 ⃗ ) d S + ∬ Σ 2 ( A ⃗ ⋅ n 0 ⃗ ) d S \iint\limits_{\Sigma}(\vec{A}\cdot\vec{n^0})dS=\iint\limits_{\Sigma_1}(\vec{A}\cdot\vec{n^0})dS+\iint\limits_{\Sigma_2}(\vec{A}\cdot\vec{n^0})dS Σ(A n0 )dS=Σ1(A n0 )dS+Σ2(A n0 )dS

Σ = Σ 1 ∪ Σ 2 \Sigma=\Sigma_1\cup\Sigma_2 Σ=Σ1Σ2,可以有公共边界,不能有公共内部,且 Σ 1   , Σ 2 \Sigma_1\ , \Sigma_2 Σ1 ,Σ2 的方向一致。

三、第二类曲面积分的形式

(1) 条件的分析

n 0 ⃗ ⋅ d S = △ d S ⃗ = { cos ⁡ α , cos ⁡ β , cos ⁡ γ } d S = { cos ⁡ α ⋅ d S , cos ⁡ β ⋅ d S , cos ⁡ γ ⋅ d S } \vec{n_0}\cdot dS\stackrel{\triangle}{=}d\vec{S}=\{\cos\alpha,\cos\beta,\cos\gamma\}dS=\{\cos\alpha\cdot dS,\cos\beta\cdot dS,\cos\gamma\cdot dS\} n0 dS=dS ={cosα,cosβ,cosγ}dS={cosαdS,cosβdS,cosγdS}

∣ cos ⁡ γ ∣ d S = d σ |\cos\gamma|dS=d\sigma cosγdS=dσ d σ d\sigma dσ d S dS dS x O y xOy xOy 平面上投影区域面积 ),同理,

∣ cos ⁡ α ∣ d S = d σ |\cos\alpha|dS=d\sigma cosαdS=dσ d σ d\sigma dσ d S dS dS y O z yOz yOz 平面上投影区域面积 ),

∣ cos ⁡ β ∣ d S = d σ |\cos\beta|dS=d\sigma cosβdS=dσ d σ d\sigma dσ d S dS dS z O x zOx zOx 平面上投影区域面积 )。

(2) 由书写简便性引入记号

cos ⁡ γ ⋅ d S = △ d x d y    ,    cos ⁡ α ⋅ d S = △ d y d z    ,    cos ⁡ β ⋅ d S = △ d z d x \cos\gamma\cdot dS\stackrel{\triangle}{=}dxdy\ \ ,\ \ \cos\alpha\cdot dS\stackrel{\triangle}{=}dydz\ \ ,\ \ \cos\beta\cdot dS\stackrel{\triangle}{=}dzdx cosγdS=dxdy  ,  cosαdS=dydz  ,  cosβdS=dzdx

那么, n 0 ⃗ ⋅ d S = d S ⃗ = { d y d z , d z d x , d x d y } \vec{n_0}\cdot dS=d\vec{S}=\{dydz,dzdx,dxdy\} n0 dS=dS ={dydz,dzdx,dxdy}
①    ∫ Σ ( A ⃗ ⋅ n 0 ⃗ ) d S ②    = ∫ Σ A ⃗ ⋅ d S ⃗ ③    = ∫ Σ ( P ( x , y , z ) cos ⁡ α + Q ( x , y , z ) cos ⁡ β + R ( x , y , z ) cos ⁡ γ ) d S    = ∫ Σ ( P cos ⁡ α + Q cos ⁡ β + R cos ⁡ γ ) d S ④    = ∫ Σ [ P ( x , y , z ) d y d z + Q ( x , y , z ) d z d x + R ( x , y , z ) d x d y ]    = ∫ Σ P d y d z + Q d z d x + R d x d y     ( 用 得 较 多 ) ⑤    = ∫ Σ P ( x , y , z ) d y d z + ∫ Σ Q ( x , y , z ) d z d x + ∫ Σ R ( x , y , z ) d x d y ( 其 实 是 由 第 ③ 类 一 曲 面 积 分 性 质 得 到 的 , 二 曲 面 积 分 不 能 直 接 用 和 的 积 分 等 于 积 分 的 和 ) \begin{aligned} ①& \ \ \int \limits_{\Sigma}(\vec{A}\cdot\vec{n^0})dS\\ ②& \ \ =\int \limits_{\Sigma}\vec{A}\cdot d\vec{S}\\ ③& \ \ =\int \limits_{\Sigma}(P(x,y,z)\cos\alpha+Q(x,y,z)\cos\beta+R(x,y,z)\cos\gamma)dS\\ & \ \ =\int \limits_{\Sigma}(P\cos\alpha+Q\cos\beta+R\cos\gamma)dS\\ ④& \ \ =\int \limits_{\Sigma}[P(x,y,z)dydz+Q(x,y,z)dzdx+R(x,y,z)dxdy]\\ & \ \ =\int \limits_{\Sigma}Pdydz+Qdzdx+Rdxdy\ \ \ (用得较多)\\ ⑤& \ \ =\int \limits_{\Sigma}P(x,y,z)dydz+\int \limits_{\Sigma}Q(x,y,z)dzdx+\int \limits_{\Sigma}R(x,y,z)dxdy\\ &\quad\quad(其实是由第③类一曲面积分性质得到的,二曲面积分不能直接用和的积分等于积分的和) \end{aligned}   Σ(A n0 )dS  =ΣA dS   =Σ(P(x,y,z)cosα+Q(x,y,z)cosβ+R(x,y,z)cosγ)dS  =Σ(Pcosα+Qcosβ+Rcosγ)dS  =Σ[P(x,y,z)dydz+Q(x,y,z)dzdx+R(x,y,z)dxdy]  =ΣPdydz+Qdzdx+Rdxdy   ()  =ΣP(x,y,z)dydz+ΣQ(x,y,z)dzdx+ΣR(x,y,z)dxdy()
第二类曲面积分如果要直接计算,一般化成第⑤种。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值