高等数学笔记-苏德矿
第十章 曲线积分和曲面积分
一、第二类曲面积分的概念
01 解决问题前的基本概念

(1) 流量的概念
平面的面积为 SSS,π\piπ 的法向量为 n⃗\vec{n}n 与指定的方向一致。
流体的流速 v⃗\vec{v}v (常向量),且 v⃗∥n⃗\vec{v}\parallel\vec{n}v∥n 方向一致,流体的密度为 μ0\mu_0μ0 (常数) 。
称流体单位时间通过平面指定侧流体的质量为流量,记作 QQQ ,Q=S∣v⃗∣μ0Q=S|\vec{v}|\mu_0Q=S∣v∣μ0 。
(2) 有夹角的流量
不同的地方 v⃗\vec{v}v 与 n⃗\vec{n}n 的夹角为 θ\thetaθ,0⩽θ⩽π0\leqslant\theta\leqslant\pi0⩽θ⩽π,,Q=(v⃗⋅n0⃗)Sμ0Q=(\vec{v}\cdot\vec{n^0})S\mu_0Q=(v⋅n0)Sμ0
02 由问题引入积分的定义
(1) 曲面的基本条件
设 Σ\SigmaΣ 为有界光滑曲面,∀ M(x,y,z)∈Σ\forall\ M(x,y,z)\in\Sigma∀ M(x,y,z)∈Σ,在 MMM 点的单位法向量 n0⃗(x,y,z)={ cosα,cosβ,cosγ}\vec{n^0}(x,y,z)=\{\cos\alpha,\cos\beta,\cos\gamma\}n0(x,y,z)={ cosα,cosβ,cosγ},
且与 Σ\SigmaΣ 指定的方向一致。
(2) 问题描述
有一个流体通过曲面 Σ\SigmaΣ ,通过 Σ\SigmaΣ 上点 M(x,y,z)M(x,y,z)M(x,y,z) 处的流速为 v⃗\vec{v}v ,
v⃗={ vx(x,y,z),vy(x,y,z),vz(x,y,z)}\vec{v}=\{v_x(x,y,z),v_y(x,y,z),v_z(x,y,z)\}v={ vx(x,y,z),vy(x,y,z),vz(x,y,z)} ( vx , vy , vzv_x\ , \ v_y\ , \ v_zvx , vy , vz 连续),
密度为 μ(x,y,z)\mu(x,y,z)μ(x,y,z) 连续,求流体通过曲面 Σ\SigmaΣ 指定侧的流量 QQQ 。
(3) 问题分析
总流量 QQQ 具有总量等于部分量之和的特点,可以用微元法。
① 取面积微元
由 QQQ 分布在曲面 Σ\SigmaΣ 上,∀ dS⊂Σ\forall\ dS\subset\Sigma∀ dS⊂Σ,dSdSdS 的大小仍记为 dSdSdS,∀ M(x,y,z)∈dS\forall\ M(x,y,z)\in dS∀ M(x,y,z)∈dS 。
② 近似处理
把 dSdSdS 看成在 M(x,y,z)M(x,y,z)M(x,y,z) 点的切平面上,面积仍记为 dSdSdS,n0⃗(x,y,z)={ cosα,cosβ,cosγ}\vec{n^0}(x,y,z)=\{\cos\alpha,\cos\beta,\cos\gamma\}n

最低0.47元/天 解锁文章
8230

被折叠的 条评论
为什么被折叠?



