高等数学笔记-苏德矿-第十章-曲线积分和曲面积分-第六节-第二类曲面积分

高等数学笔记-苏德矿

第十章 曲线积分和曲面积分

一、第二类曲面积分的概念

01 解决问题前的基本概念

在这里插入图片描述

(1) 流量的概念

平面的面积为 SSSπ\piπ 的法向量为 n⃗\vec{n}n 与指定的方向一致。

流体的流速 v⃗\vec{v}v (常向量),且 v⃗∥n⃗\vec{v}\parallel\vec{n}v n 方向一致,流体的密度为 μ0\mu_0μ0 (常数) 。

称流体单位时间通过平面指定侧流体的质量为流量,记作 QQQQ=S∣v⃗∣μ0Q=S|\vec{v}|\mu_0Q=Sv μ0

(2) 有夹角的流量

不同的地方 v⃗\vec{v}v n⃗\vec{n}n 的夹角为 θ\thetaθ0⩽θ⩽π0\leqslant\theta\leqslant\pi0θπ,,Q=(v⃗⋅n0⃗)Sμ0Q=(\vec{v}\cdot\vec{n^0})S\mu_0Q=(v n0 )Sμ0

02 由问题引入积分的定义
(1) 曲面的基本条件

Σ\SigmaΣ 为有界光滑曲面,∀ M(x,y,z)∈Σ\forall\ M(x,y,z)\in\Sigma M(x,y,z)Σ,在 MMM 点的单位法向量 n0⃗(x,y,z)={ cos⁡α,cos⁡β,cos⁡γ}\vec{n^0}(x,y,z)=\{\cos\alpha,\cos\beta,\cos\gamma\}n0 (x,y,z)={ cosα,cosβ,cosγ}

且与 Σ\SigmaΣ 指定的方向一致。

(2) 问题描述

有一个流体通过曲面 Σ\SigmaΣ ,通过 Σ\SigmaΣ 上点 M(x,y,z)M(x,y,z)M(x,y,z) 处的流速为 v⃗\vec{v}v

v⃗={ vx(x,y,z),vy(x,y,z),vz(x,y,z)}\vec{v}=\{v_x(x,y,z),v_y(x,y,z),v_z(x,y,z)\}v ={ vx(x,y,z),vy(x,y,z),vz(x,y,z)} ( vx , vy , vzv_x\ , \ v_y\ , \ v_zvx , vy , vz 连续),

密度为 μ(x,y,z)\mu(x,y,z)μ(x,y,z) 连续,求流体通过曲面 Σ\SigmaΣ 指定侧的流量 QQQ

(3) 问题分析

总流量 QQQ 具有总量等于部分量之和的特点,可以用微元法。

① 取面积微元

QQQ 分布在曲面 Σ\SigmaΣ 上,∀ dS⊂Σ\forall\ dS\subset\Sigma dSΣdSdSdS 的大小仍记为 dSdSdS∀ M(x,y,z)∈dS\forall\ M(x,y,z)\in dS M(x,y,z)dS

② 近似处理

dSdSdS 看成在 M(x,y,z)M(x,y,z)M(x,y,z) 点的切平面上,面积仍记为 dSdSdSn0⃗(x,y,z)={ cos⁡α,cos⁡β,cos⁡γ}\vec{n^0}(x,y,z)=\{\cos\alpha,\cos\beta,\cos\gamma\}n

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值