哈佛大学最受欢迎的幸福课——幸福的方法

0?wx_fmt=jpeg

(插画 | 冷雨)

今天,我想介绍一本书给大家,叫做《幸福的方法》,这本书的介绍语是“哈佛大学最受欢迎的幸福课”,可想而知,这本书有多么重要!


在继续往下看之前,请花一点时间思考一下这几个问题:


1.你幸福吗?

2.幸福到底是什么?

3.幸福,也可以通过学习和练习获得吗?


这本书的作者叫本·沙哈儿,他在16岁的时候就获得了以色列的壁球冠军,为了获得这个冠军,他拼命的长跑、不停歇的进行力量训练,时时刻刻鼓励自己。但他并不快乐,他忍受着身体的负累、精神的负荷,他认为——只要赢得了壁球冠军,这一切的付出都是值得的,就会得到幸福。然而等到他如愿以偿,狂欢庆祝独自回到家之后,他突然哭了!


为什么呢?


因为即使赢得了壁球冠军,也无法带给他持久的幸福感!


这之后,他就开始了漫长的探索,去找寻到底什么是幸福?怎样才能更幸福?直到有一天,他找到了——“幸福模型”。


0?wx_fmt=jpeg

享乐主义:为及时享乐而出卖未来的幸福人生。我脑海中顿时想到一个原型——虚竹他爹。


忙碌型:追求未来的快乐,承受着现在的痛苦。“吃得苦中苦,方为人上人”、“书山有径勤为路,学海无涯苦作舟”等等,我们从小受到的教育就是要不停的“头悬梁锥刺股”,只有这样我们才能出人头地,以至于我们大多数人都处于这个象限里,包括我自己。上初中时,老师讲:“现在苦点累点又怎样,等你考上高中以后你就知道现在受的这点苦是值得的”;上了高中后,老师又讲:“再加把劲吧,等你考上大学就好了!”


虚无主义:既对现在丧失信心,又对未来没有期待。我有很长一段时间的人生状态就这样,哀叹现在挣得少,又觉得在洛阳搞软件没有出头之日,整日闷闷不乐,神形涣散。


感悟幸福型:不但享受当下,而且通过当前的行为可以拥有更加满意的未来。嗨嗨嗨,这是《幸福的方法》这本书的重点哦。整本书的主旨就是在告诉我们,要快乐的做事,同时做的这件事又特别有意义,能够为为未来服务。拿我运营“沉默王二”订阅号这件事来说吧,如果我当初没有逼自己一把开通了订阅号的话,我现在的人生状态肯定还处在“虚无主义”的象限里,但幸运的是,我做了一件有意义的事,这事不仅仅让我感受到读书写作的快乐,还能够让我的未来充满无限可能。这不,北航出版社的董老师就找到我要约一本《web开发进阶之路》的书稿。


“人类最好的时刻,通常是在追求某一目标的过程中,把自身实力发挥得淋淋尽致时”。我很喜欢这句话,我最近一周的状态,就特别的好——每天早上起床时,用奇妙清单记下今天要完成的任务;上班后把自己的心态调整到一个更积极的层面上,不再去挖空心思的厌恶工作,而是全身心的投入到解决问题、探索问题的心流中;下班后花一定的时间和家人相处,比如说带带孩子,和老婆聊聊天;之后就开始读书写作。每天闭上眼睛睡觉的时候,我能感受到一股满满的充实感!


现在,你知道幸福到底是什么了吗?


幸福是快乐和意义的结合体!


幸福不是在有了大量财富之后才有的,幸福不是在有了显赫的名望之后才有的,幸福更不是在有至高无上的权力之后才有的。我们追求幸福的能力是与生俱来的,任何人、宗教、政权都无法把它夺走。对我们来说,只要我们认定自己是幸福的,那么要多幸福就有多幸福。


经济学家亚当斯密(国富论作者)曾说过一句话:“关于人类的幸福感,穷人相比富人,幸福感并没有任何优劣之分”,有钱人幸福吗?不一定,钱财不是衡量幸福的标准。诚然,一定的物质基础可以让我们有更好的条件去追求精神上的需求,但我们没有必要舍弃掉身体、时间、精力去换取财富。对吧,你看孔子一生就穷得要命,但孔子不幸福吗?他的幸福感特别足,你能说他老人家是“阿Q精神”?


那么,我们该怎么获得幸福呢?


我们先大声朗读一句话:“在一个惬意的环境中被动地生活所感受到的快乐,远远比不上那种有激情地投入到有价值的活动中,以及为目标而奋斗所能体验到的满足感。”所以,获得幸福需要做的第一件事就是——设定目标


下面是我为自己设定的目标。


长期目标:成为一名自由职业者,能靠自己的写作赚钱,然后通过这些钱使生活的物质阶层得到提高,进而更有动力的去读书写作。


短期目标:2017年年底出版《web开发进阶之路》。


行动计划:项目中遇到的问题总结到CSDN博客,然后只要有空闲时间出来,就把大纲中的每一个题目整理成书稿;另外每周至少产出一篇程序人生的文章,每周读一本书。


有了目标之后,我们要做什么呢?


“人类最美丽的命运、最美妙的运气,就是从事自己喜爱的事情并获得报酬。”找到这样一份理想的工作不容易,这多少需要点“运气”。我就不怎么喜欢现在的这份工作,上班时间除了我自己,就是老板,假如老板是一位美女就算了,但事实是一位饱经沧桑的中年大伯;还有就是每天要面对客户各种非人类的需求变更,真是够让人厌倦的一份工作啊!


但最近,我改变了我对这份工作意义的狭隘认知。我是在创业,我决定着公司走向成功还是失败,尽管创业维艰,但如果成功了,就能够创造一笔客观的财富,这个机会是不可多得的。另外,我可以自由决定工作的时间安排,我想看书学习就看书学习,我想写博客就写博客,总之我对自己的工作有着足够的决定权。


这,就是我的幸福工作法


然后呢?


拜伦曾说:“想要幸福的人都必须学会分享,幸福是一对双胞胎”,所以我们还要学会分享。分享什么呢?分享给谁呢?


我从2014年开始写技术博客,工作当中每解决一个值得记念的问题时,我就会写博客,我希望通过分享让那些奋斗在技术前线的程序员同伴们不再掉同样的坑,尽管多数情况下我写博客的初衷是为了精进自己的技术能力,但这不妨碍我的博客帮助了很多小伙伴,这种分享让我觉得很有意义——我不仅解决了自己的问题,也顺便解决了别人的问题。


我还会把读书的心得、对生活的感悟、对未来的期待写进“沉默王二”订阅号,分享到我的朋友圈,传递一种平凡但努力的能量。尽管现在的影响力还微不足道,但未来十年里,一定会不一样,一定会大不一样!


还有最重要的,就是分享爱与家人。对我来说,家庭是第一位的。我和我老婆讨论过一个问题,那就是——每个月给你11万生活费带娃,条件是不能见老公,你愿意吗?当时我老婆不假思索的、斩钉截铁的说,“我不要!”我好感动啊,我问她为什么?她就说,“因为老娘能自己挣钱啊!”


好了,老婆喊我下楼去接她回家,她怕黑,所以这本书的介绍也要到此结束了。你学会“幸福的方法”了吗?


你可以扫描下方二维码,关注沉默王二公众号,让我们一起打造个“幸福圈”吧!你愿意给自己一个机会吗?



0?wx_fmt=png

标题“51单片机通过MPU6050-DMP获取姿态角例程”解析 “51单片机通过MPU6050-DMP获取姿态角例程”是一个基于51系列单片机(一种常见的8位微控制器)的程序示例,用于读取MPU6050传感器的数据,并通过其内置的数字运动处理器(DMP)计算设备的姿态角(如倾斜角度、旋转角度等)。MPU6050是一款集成三轴加速度计和三轴陀螺仪的六自由度传感器,广泛应用于运动控制和姿态检测领域。该例程利用MPU6050的DMP功能,由DMP处理复杂的运动学算法,例如姿态融合,将加速度计和陀螺仪的数据进行整合,从而提供稳定且实时的姿态估计,减轻主控MCU的计算负担。终,姿态角数据通过LCD1602显示屏以字符形式可视化展示,为用户提供直观的反馈。 从标签“51单片机 6050”可知,该项目主要涉及51单片机和MPU6050传感器这两个关键硬件组件。51单片机基于8051内核,因编程简单、成本低而被广泛应用;MPU6050作为惯性测量单元(IMU),可测量设备的线性和角速度。文件名“51-DMP-NET”可能表示这是一个与51单片机及DMP相关的网络资源或代码库,其中可能包含C语言等适合51单片机的编程语言的源代码、配置文件、用户手册、示例程序,以及可能的调试工具或IDE项目文件。 实现该项目需以下步骤:首先是硬件连接,将51单片机与MPU6050通过I2C接口正确连接,同时将LCD1602连接到51单片机的串行数据线和控制线上;接着是初始化设置,配置51单片机的I/O端口,初始化I2C通信协议,设置MPU6050的工作模式和数据输出速率;然后是DMP配置,启用MPU6050的DMP功能,加载预编译的DMP固件,并设置DMP输出数据的中断;之后是数据读取,通过中断服务程序从DMP接收姿态角数据,数据通常以四元数或欧拉角形式呈现;再接着是数据显示,将姿态角数据转换为可读的度数格
MathorCup高校数学建模挑战赛是一项旨在提升学生数学应用、创新和团队协作能力的年度竞赛。参赛团队需在规定时间内解决实际问题,运用数学建模方法进行分析并提出解决方案。2021年第十一届比赛的D题就是一个典型例子。 MATLAB是解决这类问题的常用工具。它是一款强大的数值计算和编程软件,广泛应用于数学建模、数据分析和科学计算。MATLAB拥有丰富的函数库,涵盖线性代数、统计分析、优化算法、信号处理等多种数学操作,方便参赛者构建模型和实现算法。 在提供的文件列表中,有几个关键文件: d题论文(1).docx:这可能是参赛队伍对D题的解答报告,详细记录了他们对问题的理解、建模过程、求解方法和结果分析。 D_1.m、ratio.m、importfile.m、Untitled.m、changf.m、pailiezuhe.m、huitu.m:这些是MATLAB源代码文件,每个文件可能对应一个特定的计算步骤或功能。例如: D_1.m 可能是主要的建模代码; ratio.m 可能用于计算某种比例或比率; importfile.m 可能用于导入数据; Untitled.m 可能是未命名的脚本,包含临时或测试代码; changf.m 可能涉及函数变换; pailiezuhe.m 可能与矩阵的排列组合相关; huitu.m 可能用于绘制回路图或流程图。 matlab111.mat:这是一个MATLAB数据文件,存储了变量或矩阵等数据,可能用于后续计算或分析。 D-date.mat:这个文件可能包含与D题相关的特定日期数据,或是模拟过程中用到的时间序列数据。 从这些文件可以推测,参赛队伍可能利用MATLAB完成了数据预处理、模型构建、数值模拟和结果可视化等一系列工作。然而,具体的建模细节和解决方案需要查看解压后的文件内容才能深入了解。 在数学建模过程中,团队需深入理解问题本质,选择合适的数学模
以下是关于三种绘制云图或等高线图算法的介绍: 一、点距离反比插值算法 该算法的核心思想是基于已知数据点的值,计算未知点的值。它认为未知点的值与周围已知点的值相关,且这种关系与距离呈反比。即距离未知点越近的已知点,对未知点值的影响越大。具体来说,先确定未知点周围若干个已知数据点,计算这些已知点到未知点的距离,然后根据距离的倒数对已知点的值进行加权求和,终得到未知点的值。这种方法简单直观,适用于数据点分布相对均匀的情况,能较好地反映数据在空间上的变化趋势。 二、双线性插值算法 这种算法主要用于处理二维数据的插值问题。它首先将数据点所在的区域划分为一个个小的矩形单元。当需要计算某个未知点的值时,先找到该点所在的矩形单元,然后利用矩形单元四个顶点的已知值进行插值计算。具体过程是先在矩形单元的一对对边上分别进行线性插值,得到两个中间值,再对这两个中间值进行线性插值,终得到未知点的值。双线性插值能够较为平滑地过渡数据值,特别适合处理图像缩放、地理数据等二维场景中的插值问题,能有效避免插值结果出现明显的突变。 三、面距离反比 + 双线性插值算法 这是一种结合了面距离反比和双线性插值两种方法的算法。它既考虑了数据点所在平面区域对未知点值的影响,又利用了双线性插值的平滑特性。在计算未知点的值时,先根据面距离反比的思想,确定与未知点所在平面区域相关的已知数据点集合,这些点对该平面区域的值有较大影响。然后在这些已知点构成的区域内,采用双线性插值的方法进行进一步的插值计算。这种方法综合了两种算法的优点,既能够较好地反映数据在空间上的整体分布情况,又能保证插值结果的平滑性,适用于对插值精度和数据平滑性要求较高的复杂场景。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

沉默王二

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值