仙宫云自部署Ollama+openwebUI,一套代码享受多套LLM大模型

自部署,一套代码享受多套LLM大模型

例如:通义千问,deepseek,gemma,llama,yi等大模型
甚至还可以将其与stable diffusion 进行联动,实现一句话画一张图

GPU云服务器

仙宫云地址
镜像地址
视频教程

在仙宫云Linux服务器上搭建Ollama+openWebUI


使用教程

仙宫云Linux服务器Ollama+openWebUI镜像使用教程

环境

PyTorch 2.1.0
Python 3.10
CUDA 12.2

1. 安装nvm,nodejs版本管理器

curl -o- https://raw.githubusercontent.com/nvm-sh/nvm/v0.39.7/install.sh | bash
export NVM_DIR="$HOME/.nvm"
[ -s "$NVM_DIR/nvm.sh" ] && \. "$NVM_DIR/nvm.sh"  
[ -s "$NVM_DIR/bash_completion" ] && \. "$NVM_DIR/bash_completion" 

安装node环境

nvm install 18.20.2

设置npm镜像源

 npm config set registry https://registry.npmmirror.com
npm官方:https://registry.npmjs.org
淘宝最新:https://registry.npmmirror.com
腾讯云:http://mirrors.cloud.tencent.com/npm/
华为云:https://repo.huaweicloud.com/repository/npm/

安装nvm来快速管理镜像源

npm i nvm -g

查看nvm所有的镜像源

nvm ls

切换成npm镜像源

nvm use npm

2. 安装ollama

curl -fsSL https://ollama.com/install.sh | sh

如果卡顿可以使用这个命令

. /accelerate/start  # 开始加速
. /accelerate/stop # 停止加速

3. 安装open webui

因为我这里用的是docker容器服务器,所以我这里展示的是非docker的安装方式

下载代码

git clone https://github.com/open-webui/open-webui.git

安装ui界面依赖

cd /open-webui
# 添加环境变量配置
cp -RPp .env.example .env
npm i

如果安装不动,可更换npm镜像源

需要将node_modules和package-lock.json给删除掉

打包ui界面文件

npm run build

安装open webUI的python依赖

cd ./backend
pip install -r requirements.txt -U
# 如果上面的pip总是失败的话再这个命令后面添加个 -i https://pypi.tuna.tsinghua.edu.cn/simple some-package 参数来临时更换一下镜像源。
pip install -r requirements.txt -U -i https://pypi.tuna.tsinghua.edu.cn/simple some-package

启动 open webUI

bash start.sh

4. 启动ollama

启动ollama一共两种启动

第一种:公网访问

export OLLAMA_HOST=0.0.0.0:11434
ollama serve

11434可以换成其他的,自己定义

第二种:本地访问

ollama serve

不过若是机器性能不是很强的话建议公网访问,毕竟open webUI可以同时调用多个LLM大模型

抱歉我给忘了,第一次启动要在抱脸上下载文件,然后得先启动加速

一键启动脚本

#!/bin/bash
screen -ls | grep Detached | cut -d. -f1 | awk '{print \$1}' | xargs kill
echo "开始启动ollama"

# 创建一个新的screen窗口,名称为ollamaService,并执行ollama serve命令

screen -S ollamaService -d -m bash -c 'export OLLAMA\_HOST="0.0.0.0:9090"; ollama serve; exec bash'

echo "开始启动OpenWebUI"

# 创建一个新的screen窗口,名称为openWebUI,并执行cd和bash start.sh命令

screen -S openWebUI -d -m bash -c 'cd /root/open-webui/backend; bash start.sh; exec bash'

# 输出提示信息
echo "OpenWebUI URL: <http://localhost:8080>"
echo "Ollama URL: <http://0.0.0.0:9090>"
# 等待三秒或者更久
sleep 3
# 退出脚本,这将关闭终端
exit 0
### 集成OllamaOpenWebUI的方法 为了实现 OllamaOpenWebUI 的集成,需先确认已安装好这两个组件。对于希望扩展大型语言模型 (LLM) 功能至图像生成的用户来说,此集成尤为有用。 #### 安装准备 确保 Automatic1111 已经被正确设置并运行良好[^1]。这一步骤至关重要,因为后续操作依赖于该平台作为基础架构的一部分来支持整个工作流程。 #### 下载并配置OpenWebUI 前往官方 GitHub 页面获取最新版本的 OpenWebUI 并按照给定说明完成安装过程[^2]。通常情况下,这意味着克隆仓库到本地计算机上,并执行必要的构建命令以初始化项目环境。 ```bash git clone https://github.com/open-webui/open-webui.git cd open-webui npm install npm run build ``` #### 连接Ollama服务端口 一旦上述准备工作就绪,则需要调整 OpenWebUI 设置以便能够连接到 Ollama 提供的服务接口。具体做法是在 `config.json` 文件内指定 API 地址以及相应参数: ```json { "apiUrl": "http://localhost:8080", ... } ``` 这里的 URL 应指向实际部署有 Ollama 后端程序的位置;如果在同一台机器上,默认监听端口号可能是 8080 或其他自定义值,请根据实际情况修改。 #### 实现功能交互 最后,在前端界面中加入调用逻辑,使得当用户触发特定事件时(比如点击按钮),可以通过 AJAX 请求向后端发送指令从而启动基于 LLM 的图片创作任务。下面是一个简单的 jQuery 示例用于发起 POST 请求: ```javascript $.ajax({ type: 'POST', url: '/generate-image', // 对应服务器路由处理函数 data: JSON.stringify({prompt:"a beautiful sunset"}), contentType: "application/json; charset=utf-8", dataType: "json" }); ``` 以上就是关于如何将 OllamaOpenWebUI 结合使用的简要介绍。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

ZemanZhang

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值