重要:
的除特别注明外,本指南中所有步骤都是必需的。
中附加到的下载包,您必须安装依赖关系,并完成配置步骤。
这些全部都完成后,您安装已完成:
- 安装Intel® 分布的 OpenVINO 工具包核心组件
- 安装依赖关系:
- Microsoft Visual Studio * c + + 2017年或 2015 年,与 MSBuild,并构建针对 Microsoft Visual Studio 的工具
重要提示:这是两部分安装要求两个独立的下载包从互联网和两个安装过程: 一种用于 Microsoft Visual Studio,一个用于构建工具。,您必须完成这两个安装。 - CMake * 3.4 或更高版本
- Python * 提供的 Python 库,64 位3.6.5
重要提示: 确保作为此安装,单击添加到您的PATH环境变量的应用程序选项。
- Microsoft Visual Studio * c + + 2017年或 2015 年,与 MSBuild,并构建针对 Microsoft Visual Studio 的工具
- 设置环境变量
- 配置模型优化器
- 运行两个演示
- 可选:
Intel® 分布的 OpenVINO 工具包加速部署应用程序和模拟人类视觉的解决方案。基于在卷积神经网络 (CNN),该工具包横跨计算机视觉 (CV) 工作负载 Intel® 硬件,以最大限度提高性能。
Intel® 分布的 OpenVINO 工具套件包括 Intel® Deep 学习部署工具套件。有关详细信息,请参阅Intel® 分布的 OpenVINO 工具套件概述页面。
用于 Windows * 10 操作系统的 Intel® 分布的 OpenVINO 工具包:
- 启用基于 CNN 的深度学习推理边缘
- 在 Intel® CPU、 Intel® 处理器显卡 (GPU)、 Intel® Movidius™ 神经计算模块、 Intel® 神经 Compute Stick 2、 和 Intel® 视觉加速器设计与 Intel® Movidius™ VPUs 支持异构的执行
- 速度的上市时间通过一个易于使用库的计算机视觉函数和优化前的内核
- 包括优化的计算机视觉标准包括 OpenCV *、 OpenCL™,和 OpenVX * 调用
默认情况下安装以下组件:
组件 | 描述 |
此工具中导入、 进行转换,并优化中常用的框架,为可用的格式的英特尔工具,特别是界面引擎经过培训的模型。 注意: 受欢迎的框架,包含作为 Caffe *、 TensorFlow *、 MXNet *,和 ONNX * 这类框架。 | |
这是在运行的深度学习模型的引擎。它包括一套简单的推理融入您的应用程序的库。 | |
OpenCV 社区版编译 Intel® 硬件。包含计算机视觉 PVL 的库。 | |
英特尔实施 OpenVX * 针对英特尔 CPU、 GPU、 或 IPU (图像处理单元) 上运行进行了优化。 | |
预先经过培训的模型 | 一套用于学习和演示目的,或以深度学习软件开发英特尔的预先经过培训模式。 |
示例应用程序 | 简单的控制台应用程序展示如何在您的应用程序中使用英特尔的深度学习的推理引擎A 组。有关构建和运行样本的其他信息,请参阅推理引擎的开发人员指南. |
仅 Intel® CPU、 Intel® Processor Graphics、 Intel® Movidius™ 神经计算模块、 Intel® 神经 Compute Stick 2 Intel® Movidius™ VPUs 选项的 Intel® 视觉加速器设计支持和用于 Windows * 安装。Linux * 才可使用 FPGA。
硬件
- 第六到第八代 Intel® Core™
- Intel® Xeon® v5 家族
- Intel® Xeon® v6 家族
- Intel® Movidius™ 神经计算模块
- Intel® 神经计算模块 2
- 借助 Intel® Movidius VPUs Intel® 愿景加速器设计
处理器说明:
操作系统
Microsoft Windows * 10 64 位