尽管深度学习取得了令人瞩目的成就,提供了各种各样的产品和功能,但它还没有跨过最后的障碍。 随着复杂的神经网络越来越多地应用于任务关键型和安全关键型应用中,围绕其鲁棒性出现的问题也越来越多。
许多深度学习算法的黑箱性质让精通安全的解决方案架构师望而生畏,以至于许多人宁愿选择低于标准性能的系统,也不愿冒使用不透明系统带来的潜在风险。 那么,如何才能克服深度学习带来的忧虑,确保创建出更鲁棒、更值得信赖的模型呢?
可解释人工智能(Explainable Artificial Intelligence,XAI)能够提供一些答案,而贝叶斯深度学习(Bayesian Deep Learning,BDL)领域则是一个重要的基石。 在本书《Python贝叶斯深度学习》中,你将通过学习实际案例发现贝叶斯深度学习背后的基本原理,从而加深对该领域的理解,并掌握构建自己的贝叶斯深度学习模型所需的知识和工具。
本书并不是一本讨论贝叶斯深度学习理论的著作,而是将理论进行了简化,着重讲述其代码实现,以及贝叶斯深度学习工具集使用方面的实战技巧。
本书内容共分三部分:
第一部分(第 1~3 章)是基础概念和理论,主要介绍深度学习的发展 历史和局限性,以及它与贝叶斯推理结合的时机、贝叶斯推理基础、深度学习基础;
第二部分(第4~7 章)主要介绍贝叶斯深度学习的基本思想、使用原则、标准工具集代码实现、实际考虑因素;
第三部分(第 8~9 章),讲述贝叶斯深度学习的应用和发展趋势。本书内容新颖、实战性强,填 补了目前该领域的市场空白。
本书旨在通过平实的语言介绍如何在深度学习中利用贝叶斯推理,帮助读者掌握开发“知其所不知”模型的工具。这样,开 发者就能开发出更鲁棒的深度学习系统,以便更好地满足现今基于机器学习的应用需求。
本书读者对象 本书面向从事机器学习算法开发和应用的研究人员、开发人员和工程师,以及希望开始使用不确定性感知深度学习模型的人员。