聚类算法探索

本文详细介绍了聚类分析的基本概念,包括其目的(合并相似对象和区分差异),以及在不同变量类型(数值、二元、分类和有序)下的距离度量方法。重点讲解了K-均值聚类、层次聚类和基于网格的聚类算法,并提供了相关数据和R代码示例。
摘要由CSDN通过智能技术生成

参考甚至直接复制:一篇文章透彻解读聚类分析(附数据和R代码) - 知乎

1. 聚类分析的定义

  合并相似的对象以挖掘关系和模型,区分不相似的对象以探索差异

2.  距离的度量

1) 数值变量

2)二元变量

3)分类变量

4)有序变量

3. 聚类算法

1)K-均值聚类(k-means)

2)层次聚类(Hierarchical)

3)根据网格的聚类

References

[1]一篇文章透彻解读聚类分析(附数据和R代码) - 知乎

[2] 用于数据挖掘的聚类算法有哪些,各有何优势? - 知乎

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值