pandas之表格条件格式设置

本文介绍了如何使用Pandas和Matplotlib创建数据可视化,并通过样式设置技巧如负值变色、高亮、空值标记,以及数据格式化,如百分比、补零和显示正负号。涵盖了条形图、颜色梯度、以及数据处理的实用技巧。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

获取想要设置格式的数据

import pandas as pd
df=pd.read_csv("C:\\Users\\Desktop\\xz.csv",encoding='GBK',header=None)
df1=df.loc[:,1:5]
df1.columns=['xc','xr','xx','cx','sq']
import numpy as np
df1.loc[4:6,['xc']]=np.nan

在这里插入图片描述
1、变量大小用横向条形图展示

#呈现条形图
df1.style.bar("xx",vmin=0)

在这里插入图片描述
2、负值,字体变红色

def negative_color_red(val):
    color='red' if val < 0 else 'black'
    return 'color: %s'% color
df1.style.applymap(negative_color_red) ##显示负数

在这里插入图片描述
3、每列最大值的背景色变黄色

def highlight_max(s):
    '''
    highlight the maximum in a Series yellow.
    '''
    is_max = s == s.max()
    return ['background-color: yellow' if v else '' for v in is_max]
  df1.style.apply(highlight_max)

在这里插入图片描述

4、空值背景色为红色

df1.style.highlight_null()
#df1.style.highlight_null(null_color='green')  ##背景色变绿色

在这里插入图片描述

5、指定列的数值为负值,字体变红色

df1.style.applymap(color_negative_red,
                  subset=pd.IndexSlice[2:5, ['cx', 'sq']])

在这里插入图片描述

6、背景色呈现阶梯变化

#背景颜色呈现阶梯变化
df1.style.background_gradient("Greens",subset="xr")

在这里插入图片描述
在这里插入图片描述

7、条形图、阶梯和空值设置
在这里插入图片描述

8、数据添加百分比
在这里插入图片描述

9、数据小于4位填充0,加个+号及2位数

df1.style.format({'xx': "{:0<4.0f}", 'cx': '{:+.2f}'}) 

在这里插入图片描述
10、设置绝对值和和小数点并加上正负号

df1.style.format({"sq": lambda x: "±{:.2f}".format(abs(x))}) 

在这里插入图片描述

链接:https://pandas.pydata.org/pandas-docs/version/0.18/style.html

关注以下公众号可以更方便查看文章哦(* ̄︶ ̄)
在这里插入图片描述

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值