完整代码:https://download.csdn.net/download/qq_38735017/87536579
为对股票价格的涨跌幅度进行预测,本文使用了基于长短期记忆网络(LSTM)的方法。根据股票涨跌幅问题, 通过对股票信息作多值量化分类,将股票预测转化成一个多维函数拟合问题。将股票的历史基本交易信息作为特征输入,利用神经网络对其训练,最后对股票的涨跌幅度做分类预测。数据集为代号 510050 的上证股票,实验结果表明该模型在单纯预测涨跌的情况下有比较好的预测效果。
一、问题描述
1.1绪论
随着我国经济的快速发展
本文利用长短期记忆网络(LSTM)预测股票价格涨跌幅度,将股票的基本交易数据作为特征,通过LSTM进行多分类任务处理。实验表明,LSTM在预测股票涨跌上有较好的效果。数据预处理包括使用Min-Max归一化,特征工程中采用了主成分分析(PCA)降维。模型结构包含2层LSTM,训练轮数为100,输入特征维度为7,隐藏层维度为32,学习率为0.001,序列长度为5,批处理大小为64。
订阅专栏 解锁全文
1549

被折叠的 条评论
为什么被折叠?



