三维点云学习(3)1-聚类数学理论

本文深入探讨了三维点云学习的基础数学理论,涵盖了线性代数的谱定理、概率论中的联合概率与条件概率,以及拉格朗日乘数法在优化问题中的应用。同时,介绍了有向图和无向图的概念,为理解点云数据的结构提供数学支持。
摘要由CSDN通过智能技术生成

三维点云学习(3)1-数学理论

Linear Algebra

谱定理

对于一个对称矩阵,我们可以用他的特征值特征向量的线性组合表示
在这里插入图片描述

瑞利熵

在这里插入图片描述

Probability – Joint Probability

联合概率

图1 离散联合概率 ;图2 连续联合概率;图3 x连续y离散联合概率;图4 x离散y连续
在这里插入图片描述

全概率公式

在这里插入图片描述
在这里插入图片描述
条件概率:
如下所示,并不是一个合法的分布,合法分布,要求概率为1
在这里插入图片描述
对上式进行归一化后,可得到贝叶斯公式:
在这里插入图片描述
贝叶斯公式应用到多维上:
在这里插入图片描述

图论

有向图

z,x分别表示两个不同的变量,红色箭头代表之间具有的方向关系
在这里插入图片描述

无向图

在这里插入图片描述

Larange multiplier

目的:求 max f(x,y) 约束条件: g(x,y) = c
结论:max f(x,y)在约束下取得最大值时,f(x,y)与g(x,y)在该点处相切,在同一方向上,相同或者相反
在这里插入图片描述
拉格朗日乘除法求解
在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值