连续+离散变量的联合分布求解

本文探讨了在概率论中如何计算连续和离散变量的联合分布,利用全概率公式解决此类问题。通过举例说明,解释了全概率公式的应用,并给出一个具体的例子,展示当X服从标准正态分布,Y服从二项分布时,X+Y的分布函数是连续的。
摘要由CSDN通过智能技术生成

连续+离散变量的联合分布计算

在概率论中,联合分布的计算中(也就是一种函数的分布)有一类是比较特别的,即两个变量类型分别是:连续和离散的。
这类题目的求解就需要引入全概率公式

1. 全概率公式

先举个例子,小张从家到公司上班总共有三条路可以直达(如下图),但是每条路每天拥堵的可能性不太一样,由于路的远近不同,选择每条路的概率如下:
在这里插入图片描述
每天上述三条路不拥堵的概率分别为:
在这里插入图片描述
假设遇到拥堵会迟到,那么小张从Home到Company不迟到的概率是多少?

在这里插入图片描述

其实不迟到就是对应着不拥堵,设事件C为到公司不迟到,事件为选择第i条路,则:

在这里插入图片描述两个变量相互独立,并不会对另一个产生影响,所以:

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值