gpu型号对比(深度学习方向)

NVIDIA GPU型号BF16吞吐量(teraTFLOPS)Float32吞吐量(teraTFLOPS)功率(WATTS)
P4011.7611.76250
P100 PCI18.79.3250
P100 NVL21.210.6
rtx306024 (INT8:102)12.8170
RTX406030.22 (INT8: 242)15.11115
RTX4060 ti44.12 (INT8: 353)22.06165
RTX407058.3 (INT8:466)29.15200
RTX308059.529.77350
T4658.170
RTX3080 ti7034.1350
RTX4070 super70.96① (INT8:568)35.48220
RTX309071.1635.58 (10496 cuda cores)350
RTX A400076.7 (INT8: 153.4 )19.17140
RTX3090 ti8040 (10752 cuda cores)450
RTX4070 ti80.18 (INT8:641)40.09285
RTX4070 ti super88.2 (INT8:706)44.1285
V100 PCI11214250
RTX A500011727.77230
V100 NVL12515.7300
A1012531.2150
V100S PCI13016.4250
A40149.737.42300
A3016510.3165
RTX4090165.2 (INT8:1321)450
A100 PCI31219.5300
A800 NVL623.819.5240
A100 SXM62419.5400
H100 PCI151351350
H100 SXM197967700
H100 NVL3958134400

注解
由Float32算力推算,可能不准确,网络上给的是与float32 1:1算力。
数据来自 https://www.autodl.com/home

说明: 当前时间,公司退下来的,二手 V100 性价比最好。

### 深度学习 GPU 4090d 和 4090 的差异比较 #### 性能特点对比 对于深度学习应用而言,NVIDIA GeForce RTX 4090 和 NVIDIA A40 (假设 "4090d" 实际指代的是面向数据中心的型号如A40) 展现出显著的不同特性。 - **Tensor Core 支持** 在处理低精度推理任务时,尽管两者都采用了第四代 Tensor Cores 技术,但是由于硬件设计、优化方向以及软件支持上的不同,专门为企业级市场打造的数据中心版本(例如A40),相较于消费级别的RTX 4090,在INT8和INT4这类低精度推理任务上表现出更高的效能[^2]。这意味着当涉及到大规模部署或是生产环境下的高效能需求场景时,企业版显卡可能更适合用于加速深度学习工作负载。 - **内存容量与带宽** 通常情况下,专为数据中心设计的产品线会配备更大的视频随机存取存储器(Video RAM),这有助于容纳更大规模的模型及其对应的权重参数。相比之下,虽然RTX 4090拥有相当可观的记忆体配置来满足大多数高端图形渲染和个人研究项目的需求,但在面对极其复杂的深度学习框架或超大型数据集时可能会显得捉襟见肘。此外,专业系列往往具备更高水平的总线宽度及更快的数据传输速率,从而进一步提升了整体吞吐能- **功耗管理与散热方案** 考虑到长时间稳定运行的重要性,数据中心使用的GPU倾向于采用更为严格的电源管理和高效的冷却机制,确保即使是在满载状态下也能维持较低的工作温度并减少能耗成本。而零售市场上销售给个人用户的高性能游戏显卡则更多关注于峰值性能表现而非持续运作条件下的效率指标。 ```python import torch from torchvision import models device_4090 = 'cuda' if torch.cuda.is_available() else 'cpu' model_on_4090 = models.resnet50(pretrained=True).to(device_4090) # 假设我们有一个适合A40的大批量输入张量 large_batch_input = torch.randn((64, 3, 224, 224)).to('cuda') with torch.no_grad(): output_from_4090 = model_on_4090(large_batch_input[:16]) # 只能在4090上处理较小批次 ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值