文章发表丨求臻医学发布病理AI模型,实现肿瘤精准分型

近日,求臻医学科研团队研发一款基于数字病理图像的肿瘤分型深度学习模型—TMG(The Transformer-based Multiple instance learning with Global average pooling)。该模型可有效消除对病理图像细粒度标记的依赖,实现高准确率的分型,将用于原发灶不明肿瘤(CUP)的预测,助力肿瘤精准分型。目前,该研究成果已在线发表于国际生物信息学重要会议International Symposium on Bioinformatics Research and Applications(ISBRA 2023,波兰)。

c5ea8504eeb0c41cc5b05fa55204ed4c.jpeg


研究背景

病理诊断作为肿瘤诊断的“金标准”,是治疗方案选择和预后评估的首要环节,病理诊断结果的准确性对于患者的精准诊疗尤为重要。然而,仅依靠病理医生的传统病理诊断模式面临着诸多挑战,如高水平病理医生短缺、诊断结果易受到主观影响以及诊断报告获取耗时较长等问题。为应对这些挑战,智能化病理图像分析方法的开发迫在眉睫。


随着数字扫描技术的进步,病理图像数字扫描仪能够获取高分辨率的全视野病理组织切片(WSI),并完整地保留原始的组织结构。同时,基于深度学习的图像分类方法在自然图像和医学图像领域展现出了巨大的潜力和有效性。这些先进技术方法的应用使得病理图像的分析和诊断进入了一个全新的数字化和智能化的发展阶段。


然而,数字病理图像存在分辨率高、图像特征差异微小等特点,传统的深度学习方法并不适用于WSI的自动分类。现有常用方

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值