【复变函数与积分变换】04. 级数

4 级数

4.1 复数项级数

复数列的极限:设 { z n }    ( n = 1 , 2 , ⋅ ⋅ ⋅ ) \{z_n\}\ \ (n = 1, 2, · · · ) { zn}  (n=1,2,) 为一复数列,其中 z n = a n + i b n z_n = a_n + ib_n zn=an+ibn , 又设 z = a + i b z = a + ib z=a+ib 为一确定的复数。如果对于任意给定的 ϵ > 0 \epsilon > 0 ϵ>0 ,存在正整数 N ( ϵ ) N(\epsilon) N(ϵ) ,使得当 n > N n > N n>N 时,有 ∣ z n − z ∣ < ϵ |z_n − z| < \epsilon znz<ϵ 成立,则称复数列 { z n } \{z_n\} { zn} 的极限为 z z z ,记作
lim ⁡ n → + ∞ z n = z \lim_{n\to+\infty}z_n=z n+limzn=z
定理 1:复数列 { z n } = { a n + i b n } \{z_n\}=\{a_n+ib_n\} { zn}={ an+ibn} 收敛于 z = a + i b z=a+ib z=a+ib 的充要条件为
lim ⁡ n → ∞ a n = a    ,      lim ⁡ n → ∞ b n = b \lim_{n\to\infty}a_n=a \ \ , \ \ \ \ \lim_{n\to\infty}b_n=b nliman=a  ,    nlimbn=b
定理 2(柯西收敛准则):复数列 { z n } \{z_n\} { zn} 收敛于 z z z 的充要条件为,对于任意给定的 ϵ > 0 \epsilon > 0 ϵ>0 ,存在正整数 N ( ϵ ) N(\epsilon) N(ϵ) ,使得当 n > N n > N n>N 时,恒有
∣ z n + p − z n ∣ < ϵ      ( p = 1 , 2 , . . . ) |z_{n+p}-z_n|<\epsilon \ \ \ \ (p=1,2,...) zn+pzn<ϵ    (p=1,2,...)
复数项级数部分和的概念同实数项级数类似:
∑ n = 1 ∞ z n = z 1 + z 2 + . . . + z n + . . . \sum_{n=1}^\infty z_n=z_1+z_2+...+z_n+... n=1zn=z1+z2+...+zn+...

S n = z 1 + z 2 + . . . + z n S_n=z_1+z_2+...+z_n Sn=z1+z2+...+zn

如果 { S n } \{Sn\} { Sn} 收敛,则称级数 ∑ n = 1 ∞ z n \displaystyle\sum_{n=1}^\infty z_n n=1zn 收敛。

定理 3:复数项级数 ∑ n = 1 ∞ z n \displaystyle\sum_{n=1}^\infty z_n n=1zn 收敛的充要条件是它的部分和序列 { S n } \{S_n\} { Sn} 满足柯西收敛准则。

推论:复数项级数 ∑ n = 1 ∞ z n \displaystyle\sum_{n=1}^\infty z_n n=1zn 收敛的必要条件是 lim ⁡ n → ∞ z n = 0 \displaystyle\lim_{n\to\infty}z_n=0 nlimzn=0 .

定理 4:复数项级数 ∑ n = 1 ∞ z n \displaystyle\sum_{n=1}^\infty z_n n=1zn 收敛的充要条件是级数 ∑ n = 1 ∞ a n \displaystyle\sum_{n=1}^\infty a_n n=1an 和级数 ∑ n = 1 ∞ b n \displaystyle\sum_{n=1}^\infty b_n n=1bn 均收敛,其中 { z n } = { a n + i b n } \{z_n\}=\{a_n+ib_n\} { zn}={ an+ibn}

定理 5:如果级数 ∑ n = 1 ∞ ∣ z n ∣ \displaystyle\sum_{n=1}^\infty |z_n| n=1zn 收敛,则 ∑ n = 1 ∞ z n \displaystyle\sum_{n=1}^\infty z_n n=1zn 也收敛,且有不等式
∣ ∑ n = 1 ∞ z n ∣ ≤ ∑ n = 1 ∞ ∣ z n ∣ \bigg|\displaystyle\sum_{n=1}^\infty z_n \bigg|\leq\displaystyle\sum_{n=1}^\infty |z_n| n=1znn=1zn
如果级数 ∑ n = 1 ∞ ∣ z n ∣ \displaystyle\sum_{n=1}^\infty |z_n| n=1zn 收敛,则称 ∑ n = 1 ∞ z n \displaystyle\sum_{n=1}^\infty z_n n=1zn 绝对收敛;如果级数

  • 4
    点赞
  • 11
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值