复变函数、第四章(级数)

第一节 复数项的级数

一、复数序列的极限
定义1,按一定次序排列的一列复数, α 1 = a 1 + i b 1 , α 2 = a 2 + i b 2 ⋅ ⋅ ⋅ α n = a n + i b n \alpha_1=a_1+ib_1 ,\alpha_2=a_2+ib_2···\alpha_n=a_n+ib_n α1=a1+ib1α2=a2+ib2αn=an+ibn称为复数序列,记作 { α n } \{\alpha_n\} {αn}

定义2.设 { α n } \{\alpha_n\} {αn}是一复数列,其中 α n = a n + i b n ( n = 1 , 2 ⋅ ⋅ ⋅ ) \alpha_n=a_n+ib_n(n=1,2···) αn=an+ibn(n=1,2)又设 α = a + i b \alpha=a+ib α=a+ib为一确定的复数,如果任意给定 ϵ > 0 \epsilon>0 ϵ>0,相应的存在一个正数 N = N ( ϵ ) N=N(\epsilon) N=N(ϵ),当 n > N n>N n>N时,都有 ∣ α n − α ∣ < ϵ |\alpha_n-\alpha|<\epsilon αnα<ϵ成立,那么
lim ⁡ n → + ∞ α n = α \lim_{n \to +\infty}\alpha_n=\alpha n+limαn=α

定理1.令 α n = a n + i b n , α = a + i b \alpha_n=a_n+ib_n,\alpha=a+ib αn=an+ibnα=a+ib,其中 a n , b n , a , b a_n,b_n,a,b an,bn,a,b都是实数,那么 lim ⁡ n → + ∞ α n = α    ⟹    lim ⁡ n → ∞ a n = a , lim ⁡ n → ∞ b n = b \lim_{n \to +\infty}\alpha_n=\alpha \implies \lim_{n\to\infty}a_n=a, \lim_{n\to\infty}b_n=b n+limαn=αnliman=a,nlimbn=b

二、复数项级数
定义3.设 { α n = { a n + i b n } } ( n = 1 , 2 ⋅ ⋅ ⋅ ) \{\alpha_n=\{a_n+ib_n\}\}(n=1,2···) {αn={an+ibn}}(n=1,2)为一复数列,表达式 α 1 + α 2 + α 3 ⋅ ⋅ ⋅ = lim ⁡ n → ∞ ∑ k = 1 n α n \alpha_1+\alpha_2+\alpha_3···=\lim_{n\to\infty}\sum_{k=1}^{n}\alpha_n α1+α2+α3=nlimk=1nαn称为无穷级数,记作 ∑ n = 1 ∞ α n \sum_{n=1}^{\infty}\alpha_n n=1αn
定义4.无穷级数的最前面n项和称为级数的部分和。
定义5.如果级数的部分和收敛,那么级数收敛,反之亦然。
定理二、设 α n = a n + i b n ( n = 1 , 2 ⋅ ⋅ ⋅ ) \alpha_n=a_n+ib_n(n=1,2···) αn=an+ibn(n=1,2)那么级数收敛的充要条件是 ∑ a n , ∑ b n \sum a_n,\sum b_n an,bn都收敛。
推论:级数收敛的必要条件是 lim ⁡ n → ∞ α n = 0 \lim_{n\to\infty }\alpha_n=0 limnαn=0
定义6.对于级数,如果正项级数 ∑ ∣ a n ∣ \sum |a_n| an收敛,那么称级数 ∑ a n \sum a_n an绝对收敛。
如果级数 ∑ a n \sum a_n an收敛,但正项级数 ∑ ∣ a n ∣ \sum |a_n| an不收敛,那么称级数 ∑ a n \sum a_n an为条件收敛。
定理三、如果级数 ∑ α n \sum \alpha_n αn绝对收敛,那么级数 ∑ a n \sum a_n an必收敛。
推论:级数 ∑ α n \sum \alpha_n αn绝对收敛的充要条件是 ∑ a n \sum a_n an ∑ b n \sum b_n bn都绝对收敛。

第二节 幂级数

一、复变函数项级数的概念
定义1.设 { f n ( z ) } ( 1 , 2 , ⋅ ⋅ ⋅ ) \{f_n(z)\}(1,2,···) {fn(z)}(1,2,)为复变函数序列,其中各项在区域,D内有定义,表达式 ∑ f n ( z ) = f 1 ( z ) + f 2 ( z ) ⋅ ⋅ ⋅ = lim ⁡ n → ∞ ∑ k = 1 n f k ( z ) \sum f_n(z)=f_1(z)+f_2(z)···=\lim_{n\to\infty}\sum_{k=1}^{n}f_k(z) fn(z)=f1(z)+f2(z)=nlimk=1nfk(z)

定理1.阿贝尔定理
如果级数 ∑ c n z n \sum c_nz^n cnzn z = z 0 ( ≠ 0 ) z=z_0(\neq0) z=z0(=0)收敛,那么对满足 ∣ z ∣ < ∣ z 0 ∣ |z|<|z_0| z<z0 z z z,级数必绝对收敛,如果在 z = z 0 ( ≠ 0 ) z=z_0(\neq0) z=z0(=0)发散,那么对满足 ∣ z ∣ > ∣ z 0 ∣ |z|>|z_0| z>z0 z z z,级数必发散。

二、收敛半径的求法
比值法:如果 lim ⁡ n → ∞ ∣ c n + 1 ∣ ∣ c n ∣ = λ \lim_{n\to\infty}\frac{|c_{n+1}|}{|c_n|}=\lambda nlimcncn+1=λ,收敛半径 R = 1 λ R=\frac{1}{\lambda} R=λ1

根值法:如果 lim ⁡ n → ∞ ∣ c n ∣ n = λ ≠ 0 \lim_{n\to\infty}\sqrt[n]{|c_n|}=\lambda\neq0 nlimncn =λ=0,那么收敛半径 R = 1 λ R=\frac{1}{\lambda} R=λ1

三、幂级数的运算和性质
1.像实变幂级数一样,复变幂级数也存在有理运算 f ( z ) + g ( z ) = ∑ n = 0 ∞ ( a n ± b n ) z n , ∣ z ∣ < R f(z)+g(z)=\sum_{n=0}^{\infty}(a_n\pm b_n)z^n,|z|<R f(z)+g(z)=n=0(an±bn)zn,z<R f ( z ) ∗ g ( z ) = ∑ n = 0 ∞ a n z n ∑ n = 0 ∞ b n z n , ∣ z ∣ < R f(z)*g(z)=\sum_{n=0}^{\infty}a_nz^n\sum_{n=0}^{\infty}b_nz^n,|z|<R f(z)g(z)=n=0anznn=0bnzn,z<R

2.设幂级数 ∑ c n ( z − z 0 ) n \sum c_n(z-z_0)^n cn(zz0)n的收敛半径为 R R R,那么
(1)它和函数 f ( z ) f(z) f(z),即 f ( z ) = ∑ c n ( z − a ) n f(z)=\sum c_n(z-a)^{n} f(z)=cn(za)n是收敛圆: ∣ z − a ∣ < R |z-a|<R za<R内的解析函数。
(2) f ( z ) f(z) f(z)在收敛域内的导数可将其幂级数逐项求导得到,即 f ′ ( z ) = ∑ n c n ( z − a ) n − 1 f'(z)=\sum nc_n(z-a)^{n-1 } f(z)=ncn(za)n1
(3) f ( z ) f(z) f(z)在收敛圆内可逐项积分,即 ∫ c f ( z ) d z = ∑ c n ∫ c ( z − a ) n d z , C ∈ ∣ z − a ∣ < R \int_cf(z)dz=\sum c_n\int_c(z-a)^ndz,C\in|z-a|<R cf(z)dz=cnc(za)ndz,Cza<R

第三节、泰勒级数

f ( z ) f(z) f(z)在区域D内有解析, z 0 z_0 z0为D内的一点, d d d z 0 z_0 z0 D D D的边界上各点的最短距离,则当 ∣ z − z 0 ∣ < d |z-z_0|<d zz0<d时, f ( z ) f(z) f(z)可展为幂级数 f ( z ) = ∑ n = 0 ∞ c n ( z − z 0 ) n f(z)=\sum_{n=0}^\infty c_n(z-z_0)^n f(z)=n=0cn(zz0)n c n = 1 n ! f ( n ) ( z 0 ) , n = 0 , 1 , 2 ⋅ ⋅ ⋅ c_n=\frac{1}{n!}f^{(n)}(z_0),n=0,1,2··· cn=n!1f(n)(z0),n=0,1,2
例:
e z = 1 + z 1 ! + z 2 2 ! + z 3 3 ! ⋅ ⋅ ⋅ e^z=1+\frac{z}{1!}+\frac{z^2}{2!}+\frac{z^3}{3!}··· ez=1+1!z+2!z2+3!z3
s i n z = ∑ n = 0 ∞ ( − 1 ) n z 2 n + 1 ( 2 n + 1 ) ! ( ∣ z ∣ < + ∞ ) sinz=\sum_{n=0}^\infty (-1)^n\frac{z^{2n+1}}{(2n+1)!}(|z|<+\infty) sinz=n=0(1)n(2n+1)!z2n+1(z<+)
c o s z = ∑ n = 0 ∞ ( − 1 ) n z 2 n ( 2 n ) ! ( ∣ z ∣ < + ∞ ) cosz=\sum_{n=0}^\infty (-1)^n\frac{z^{2n}}{(2n)!}(|z|<+\infty) cosz=n=0(1)n(2n)!z2n(z<+)
1 1 − z = 1 + z + z 2 ⋅ ⋅ ⋅ + z n + ⋅ ⋅ ⋅ \frac{1}{1-z}=1+z+z^2···+z^n+··· 1z1=1+z+z2+zn+
1 1 + z = 1 − z + z 2 ⋅ ⋅ ⋅ ( − 1 ) n z n + ⋅ ⋅ ⋅ \frac{1}{1+z}=1-z+z^2···(-1)^nz^n+··· 1+z1=1z+z2(1)nzn+
ln ⁡ ( 1 + z ) = z − z 2 2 + z 3 3 ⋅ ⋅ ⋅ ( − 1 ) n z n + 1 n + 1 ( ∣ z ∣ < 1 ) \ln(1+z)=z-\frac{z^2}{2}+\frac{z^3}{3}···\frac{(-1)^nz^{n+1}}{n+1}(|z|<1) ln(1+z)=z2z2+3z3n+1(1)nzn+1(z<1)

第四节、洛朗级数

f ( z ) f(z) f(z)在圆环域 R 1 < ∣ z − z 0 ∣ < R 2 R_1<|z-z_0|<R_2 R1<zz0<R2内处处解析,那么 f ( z ) = ∑ n = − ∞ ∞ c n ( z − z 0 ) n f(z)=\sum_{n=-\infty}^\infty c_n(z-z_0)^n f(z)=n=cn(zz0)n其中 c n = 1 2 π i ∮ c f ( ζ ) ( ζ − z 0 ) n + 1 d ζ ( n = 0 , ± 1 , ± 2 ⋅ ⋅ ⋅ ) c_n=\frac{1}{2\pi i}\oint_c\frac{f(\zeta)}{(\zeta-z_0)^{n+1}}d\zeta(n=0,\pm1,\pm2···) cn=2πi1c(ζz0)n+1f(ζ)dζ(n=0,±1,±2)

  • 2
    点赞
  • 12
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值