复变函数——学习笔记5:复级数

复级数与复函数项级数

复常数项级数

复级数是实级数在复数域的推广,实级数的许多性质是可以直接推广到复级数的,我们这里仅仅列举大部分定义和结论,必要的时候才给予证明。

复级数 { z n } \{z_n\} {zn}是一个复数列,如果部分和序列 { ∑ k = 1 n z k } \displaystyle\{\sum_{k=1}^nz_k\} {k=1nzk}是收敛列,则称级数 ∑ n = 1 ∞ z n \displaystyle\sum_{n=1}^\infty z_n n=1zn收敛, { ∑ k = 1 n z k } \displaystyle\{\sum_{k=1}^nz_k\} {k=1nzk}的极限为级数 ∑ n = 1 ∞ z n \displaystyle\sum_{n=1}^\infty z_n n=1zn的和,否则称级数 ∑ n = 1 ∞ z n \displaystyle\sum_{n=1}^\infty z_n n=1zn是发散的

复级数收敛的充要条件:对复级数 ∑ n = 1 ∞ z n \displaystyle\sum_{n=1}^\infty z_n n=1zn,其中 z n = x n + i y n , n = 1 , 2 , ⋯ z_n=x_n+iy_n,n=1,2,\cdots zn=xn+iyn,n=1,2,,则级数收敛的充要条件是两个实级数 ∑ n = 1 ∞ x n \displaystyle\sum_{n=1}^\infty x_n n=1xn ∑ n = 1 ∞ y n \displaystyle\sum_{n=1}^\infty y_n n=1yn都收敛

复级数收敛的必要条件:如果复级数 ∑ n = 1 ∞ z n \displaystyle\sum_{n=1}^\infty z_n n=1zn收敛,则 lim ⁡ n → ∞ z n = 0 \lim_{n\to\infty}z_n=0 nlimzn=0

复级数的柯西收敛准则:级数 ∑ n = 1 ∞ z n \displaystyle\sum_{n=1}^\infty z_n n=1zn收敛的充要条件是对任意的 ε > 0 \varepsilon>0 ε>0,存在 N N N,当 n ≥ N n\ge N nN,对任意的 p ≥ 1 p\ge 1 p1,都有 ∣ ∑ k = n + 1 n + p z k ∣ < ε \left|\sum_{k=n+1}^{n+p}z_k\right|<\varepsilon k=n+1n+pzk<ε

绝对收敛:如果级数 ∑ n = 1 ∞ ∣ z n ∣ \displaystyle \sum_{n=1}^\infty|z_n| n=1zn绝对收敛,则称复级数 ∑ n = 1 ∞ z n \displaystyle \sum_{n=1}^\infty z_n n=1zn绝对收敛,绝对收敛级数一定收敛

柯西乘积:如果 ∑ n = 1 ∞ z n ′ \displaystyle\sum_{n=1}^\infty z_n^\prime n=1zn ∑ n = 1 ∞ z n ′ ′ \displaystyle \sum_{n=1}^\infty z_n^{\prime\prime} n=1zn绝对收敛,那么级数 ∑ n = 1 ∞ ( z 1 ′ z n − 1 ′ ′ + z 2 ′ z n − 2 ′ ′ + ⋯ + z n − 1 ′ z 1 ′ ′ ) \sum_{n=1}^\infty (z_1^\prime z_{n-1}^{\prime\prime}+z_2^\prime z_{n-2}^{\prime\prime}+\cdots+z_{n-1}^\prime z_1^{\prime\prime}) n=1(z1zn1+z2zn2++zn1z1)也绝对收敛,其和为 ∑ n = 1 ∞ z n ′ ∑ n = 1 ∞ z n ′ ′ \displaystyle\sum_{n=1}^\infty z_n^\prime \sum_{n=1}^\infty z_n^{\prime\prime} n=1znn=1zn

复函数项级数

极限函数:复函数列 { f n ( z ) } \{f_n(z)\} {fn(z)}在点集 E E E的每一个点 z z z上,级数 ∑ n = 1 ∞ f n ( z ) \displaystyle\sum_{n=1}^\infty f_n(z) n=1fn(z)收敛,则称函数项级数 ∑ n = 1 ∞ f n ( z ) \displaystyle\sum_{n=1}^\infty f_n(z) n=1fn(z) E E E上逐点收敛, S ( z ) = ∑ n = 1 ∞ f n ( z ) \displaystyle S(z)=\sum_{n=1}^\infty f_n(z) S(z)=n=1fn(z)为级数 ∑ n = 1 ∞ f n ( z ) \displaystyle\sum_{n=1}^\infty f_n(z) n=1fn(z) E E E上的和函数

一致收敛:函数项级数 ∑ n = 1 ∞ f n ( z ) \displaystyle\sum_{n=1}^\infty f_n(z) n=1fn(z) E E E上逐点收敛,和函数为 S ( z ) S(z) S(z),如果对任意的 ε > 0 \varepsilon>0 ε>0,存在正整数 N N N,只要 n ≥ N n\ge N nN,对任意的 z ∈ E z\in E zE都有 ∣ ∑ k = 1 n f k ( z ) − S ( z ) ∣ < ε \left|\sum_{k=1}^n f_k(z) - S(z)\right|<\varepsilon k=1nfk(z)S(z)<ε则称函数项级数 ∑ n = 1 ∞ f n ( z ) \displaystyle\sum_{n=1}^\infty f_n(z) n=1fn(z) E E E上一致收敛

一致收敛的柯西准则:函数项级数 ∑ n = 1 ∞ f n ( z ) \displaystyle\sum_{n=1}^\infty f_n(z) n=1fn(z) E E E上一致收敛的充要条件是:对任意的 ε > 0 \varepsilon>0 ε>0,存在正整数 N N N,只要 n ≥ N n\ge N nN,对任意的 p ≥ 1 p\ge 1 p1,对任意的 z ∈ E z\in E zE,都有 ∣ ∑ k = n + 1 n + p f k ( z ) ∣ < ε \left|\sum_{k=n+1}^{n+p} f_k(z)\right|<\varepsilon k=n+1n+pfk(z)<ε

一致收敛的魏尔斯特拉斯判别法:如果函数项级数 ∑ n = 1 ∞ f n ( z ) \displaystyle\sum_{n=1}^\infty f_n(z) n=1fn(z) E E E上满足,存在正项级数 ∑ n = 1 ∞ M n \displaystyle\sum_{n=1}^\infty M_n n=1Mn,使得 ∣ f n ( z ) ∣ ≤ M n , ∀ z ∈ E |f_n(z)|\le M_n,\forall z\in E fn(z)Mn,zE,则 ∑ n = 1 ∞ f n ( z ) \displaystyle\sum_{n=1}^\infty f_n(z) n=1fn(z) E E E上一致收敛

内闭一致收敛:如果函数项级数 ∑ n = 1 ∞ f n ( z ) \displaystyle\sum_{n=1}^\infty f_n(z) n=1fn(z)在区域 D D D的任意有界闭子集一致收敛,则称 ∑ n = 1 ∞ f n ( z ) \displaystyle\sum_{n=1}^\infty f_n(z) n=1fn(z) D D D上内闭一致收敛

同一致收敛的实函数项级数一样,一致收敛的复函数项级数也有良好的性质。

连续性
(1) { f n ( z ) } \{f_n(z)\} {fn(z)} E E E上一致收敛到 f ( z ) f(z) f(z),如果 f n ( z ) f_n(z) fn(z) E E E上连续 ( n = 1 , 2 , ⋯   ) (n=1,2,\cdots) (n=1,2,),则 f ( z ) f(z) f(z) E E E上连续
(2) ∑ n = 1 ∞ f n ( z ) \displaystyle\sum_{n=1}^\infty f_n(z) n=1fn(z) E E E上一致收敛,和函数为 S ( z ) S(z) S(z) f n ( z ) f_n(z) fn(z) E E E上连续 ( n = 1 , 2 , ⋯   ) (n=1,2,\cdots) (n=1,2,),则 S ( z ) S(z) S(z) E E E上连续

积分号与求和号的交换
(1) { f n ( z ) } \{f_n(z)\} {fn(z)}在简单曲线 L L L上一致收敛到 f ( z ) f(z) f(z),则积分和极限号可交换,即 ∫ L f ( z ) d z = lim ⁡ n → ∞ ∫ L f n ( z ) d z \int_L f(z)dz=\lim_{n\to\infty}\int_L f_n(z)dz Lf(z)dz=nlimLfn(z)dz(2)级数 ∑ n = 1 ∞ f n ( z ) \displaystyle\sum_{n=1}^\infty f_n(z) n=1fn(z)在简单曲线 L L L上一致收敛,和函数为 S ( x ) S(x) S(x),则 ∫ L S ( z ) d z = ∑ n = 1 ∞ ∫ L f n ( z ) d z \int_L S(z)dz=\sum_{n=1}^\infty\int_Lf_n(z)dz LS(z)dz=n=1Lfn(z)dz

魏尔斯特拉斯定理
设函数 f n ( z ) ( n = 1 , 2 , 3 , ⋯   ) f_n(z)(n=1,2,3,\cdots) fn(z)(n=1,2,3,)在区域 D D D内解析,并且级数 ∑ n = 1 ∞ f n ( z ) \displaystyle\sum_{n=1}^\infty f_n(z) n=1fn(z) D D D中内闭一致收敛到 S ( x ) S(x) S(x),则 S ( x ) S(x) S(x) D D D内解析,并且在 D D D S ( p ) ( z ) = ∑ n = 1 ∞ f n ( p ) ( z ) S^{(p)}(z)=\sum_{n=1}^\infty f_n^{(p)}(z) S(p)(z)=n=1fn(p)(z)且该级数在 D D D内也是内闭一致收敛的

证:
我们要证明三点:第一 S ( z ) S(z) S(z) D D D上解析,第二 S ( p ) ( z ) = ∑ n = 1 ∞ f n ( p ) ( z ) \displaystyle S^{(p)}(z)=\sum_{n=1}^\infty f_n^{(p)}(z) S(p)(z)=n=1fn(p)(z),第三级数 ∑ n = 1 ∞ f n ( p ) ( z ) \displaystyle \sum_{n=1}^\infty f_n^{(p)}(z) n=1fn(p)(z)是内闭一致收敛的。
(1)先证明 S ( z ) S(z) S(z) D D D上解析, z 0 ∈ D z_0\in D z0D,存在闭邻域 B ‾ ( z 0 , δ ) ⊆ D \overline{B}(z_0,\delta)\subseteq D B(z0,δ)D,对于任何在该闭邻域内的逐段光滑的闭曲线 C C C,都有 ∫ C f n ( z ) d z = 0 \int_Cf_n(z)dz=0 Cfn(z)dz=0由于 ∑ n = 1 ∞ f n ( z ) \displaystyle\sum_{n=1}^\infty f_n(z) n=1fn(z) D D D上一致收敛,则 ∫ C S ( z ) d z = ∑ n = 1 ∞ ∫ C f n ( z ) d z = 0 \int_CS(z)dz=\sum_{n=1}^\infty\int_Cf_n(z)dz=0 CS(z)dz=n=1Cfn(z)dz=0并且 S ( z ) S(z) S(z)在该闭邻域上连续,由莫雷拉定理, S ( z ) S(z) S(z)在该邻域上解析,故 S ( z ) S(z) S(z) D D D上解析。
(2)第二,证明 S ( p ) ( z ) = ∑ n = 1 ∞ f n ( p ) ( z ) \displaystyle S^{(p)}(z)=\sum_{n=1}^\infty f_n^{(p)}(z) S(p)(z)=n=1fn(p)(z),对于 z 0 ∈ D z_0\in D z0D,存在闭邻域 B ‾ ( z 0 , ρ ) ⊆ D \overline{B}(z_0,\rho)\subseteq D B(z0,ρ)D,由柯西积分公式,有 f n ( p ) ( z 0 ) = p ! 2 π i ∫ ∣ z − z 0 ∣ = ρ f n ( z ) ( z − z 0 ) p + 1 d z f_n^{(p)}(z_0)=\frac{p!}{2\pi i}\int_{|z-z_0|=\rho}\frac{f_n(z)}{(z-z_0)^{p+1}}dz fn(p)(z0)=2πip!zz0=ρ(zz0)p+1fn(z)dz g n ( z ) = f n ( z ) ( z − z 0 ) p + 1 g_n(z)=\frac{f_n(z)}{(z-z_0)^{p+1}} gn(z)=(zz0)p+1fn(z),那么级数 ∑ n = 1 ∞ g n ( z ) \displaystyle\sum_{n=1}^\infty g_n(z) n=1gn(z) ∣ z − z 0 ∣ = ρ |z-z_0|=\rho zz0=ρ上一致收敛到 S ( z ) ( z − z 0 ) p + 1 \frac{S(z)}{(z-z_0)^{p+1}} (zz0)p+1S(z),则积分号和极限号可交换,故 S ( p ) ( z 0 ) = p ! 2 π i ∫ ∣ z − z 0 ∣ = ρ S ( z ) ( z − z 0 ) p + 1 d z = p ! 2 π i ∫ ∣ z − z 0 ∣ = ρ ∑ n = 1 ∞ g n ( z ) d z = p ! 2 π i ∑ n = 1 ∞ ∫ ∣ z − z 0 ∣ = ρ g n ( z ) d z = ∑ n = 1 ∞ f n ( p ) ( z 0 ) \begin{aligned} &S^{(p)}(z_0)=\frac{p!}{2\pi i}\int_{|z-z_0|=\rho}\frac{S(z)}{(z-z_0)^{p+1}}dz\\ =&\frac{p!}{2\pi i}\int_{|z-z_0|=\rho}\sum_{n=1}^\infty g_n(z)dz=\frac{p!}{2\pi i}\sum_{n=1}^\infty\int_{|z-z_0|=\rho}g_n(z)dz\\ =&\sum_{n=1}^\infty f_n^{(p)}(z_0) \end{aligned} ==S(p)(z0)=2πip!zz0=ρ(zz0)p+1S(z)dz2πip!zz0=ρn=1gn(z)dz=2πip!n=1zz0=ρgn(z)dzn=1fn(p)(z0)(3)最后,再证明以上级数是内闭一致收敛的,由柯西准则证明
对任意的 z 0 ∈ D z_0\in D z0D,存在一个闭邻域 B ‾ ( z 0 , r ) ⊂ D \overline{B}(z_0,r)\subset D B(z0,r)D ∑ n = 1 ∞ f n ( z ) \displaystyle\sum_{n=1}^\infty f_n(z) n=1fn(z) D D D上内闭一致收敛,因此,对任意的 ε > 0 \varepsilon>0 ε>0,存在正整数 N N N,当 n ≥ N n\ge N nN时,对任意的 p ≥ 1 p\ge 1 p1 z ∈ B ‾ ( z 0 , r ) z\in \overline{B}(z_0,r) zB(z0,r),有 ∣ ∑ k = n + 1 n + p f k ( z ) ∣ < 2 p r p − 1 ε p ! \left|\sum_{k=n+1}^{n+p} f_k(z)\right|<\frac{2^pr^{p-1}\varepsilon}{p!} k=n+1n+pfk(z)<p!2prp1ε则对任意的 z ′ ∈ B ‾ ( z 0 , r 2 ) z^\prime\in\overline{B}(z_0,\frac{r}{2}) zB(z0,2r),都有 ∣ ∑ k = n + 1 n + p f k ( p ) ( z ′ ) ∣ = ∣ p ! 2 π i ∫ ∣ z − z 0 ∣ = r ∑ k = n + 1 n + p f k ( z ) ( z − z ′ ) p d z ∣ ≤ p ! 2 π ∫ ∣ z − z 0 ∣ = r ∣ ∑ k = n + 1 n + p f k ( z ) ∣ ∣ z − z ′ ∣ p d s ≤ ε \begin{aligned} &\left|\sum_{k=n+1}^{n+p}f_k^{(p)}(z^\prime)\right|=\left|\frac{p!}{2\pi i}\int_{|z-z_0|=r}\frac{\sum_{k=n+1}^{n+p}f_k(z)}{(z-z^\prime)^p}dz\right|\\ \le& \frac{p!}{2\pi}\int_{|z-z_0|=r}\frac{\left|\sum_{k=n+1}^{n+p}f_k(z)\right|}{|z-z^\prime|^p}ds\le \varepsilon \end{aligned} k=n+1n+pfk(p)(z)=2πip!zz0=r(zz)pk=n+1n+pfk(z)dz2πp!zz0=rzzpk=n+1n+pfk(z)dsε ∑ n = 1 ∞ f n ( p ) ( z ) \displaystyle\sum_{n=1}^\infty f_n^{(p)}(z) n=1fn(p)(z) B ‾ ( z 0 , r 2 ) \overline{B}(z_0,\frac{r}{2}) B(z0,2r)上一致收敛,对于任意有界闭集 E ⊂ D E\subset D ED,任意 z ∈ D z\in D zD,都存在 z z z的一个包含在 D D D内的邻域, ∑ n = 1 ∞ f n ( p ) ( z ) \displaystyle\sum_{n=1}^\infty f_n^{(p)}(z) n=1fn(p)(z)在其上一致收敛,应用有限覆盖定理即可证得 ∑ n = 1 ∞ f n ( p ) ( z ) \displaystyle\sum_{n=1}^\infty f_n^{(p)}(z) n=1fn(p)(z) E E E上一致收敛,故 ∑ n = 1 ∞ f n ( p ) ( z ) \displaystyle\sum_{n=1}^\infty f_n^{(p)}(z) n=1fn(p)(z) D D D上内闭一致收敛

幂级数、解析函数的泰勒级数

幂级数的收敛区域及性质

幂级数:形如 ∑ n = 0 ∞ a n ( z − z 0 ) n \displaystyle\sum_{n=0}^\infty a_n(z-z_0)^n n=0an(zz0)n的级数

接下来我们需要讨论幂级数的收敛区域,设 z 0 = 0 z_0=0 z0=0,讨论幂级数 ∑ n = 0 ∞ a n z n \displaystyle\sum_{n=0}^\infty a_n z^n n=0anzn,如果幂级数在 z 0 z_0 z0处收敛,对 ∣ z ∣ < ∣ z 0 ∣ |z|<|z_0| z<z0,考察通项 a n z n = a n z 0 n ( z z 0 ) n a_nz^n=a_nz_0^n(\frac{z}{z_0})^n anzn=anz0n(z0z)n ∣ z z 0 ∣ < 1 |\frac{z}{z_0}|<1 z0z<1,并且由于 ∑ n = 0 ∞ a n z 0 n \displaystyle\sum_{n=0}^\infty a_nz_0^n n=0anz0n收敛,有 lim ⁡ n → ∞ a n z 0 n = 0 \lim_{n\to\infty}a_nz_0^n=0 nlimanz0n=0故存在 M > 0 M>0 M>0,对任意的 n = 1 , 2 , ⋯ n=1,2,\cdots n=1,2,,都有 ∣ a n z 0 n ∣ ≤ M |a_nz_0^n|\le M anz0nM,因此 ∣ a n z n ∣ ≤ M ∣ z z 0 ∣ n |a_nz^n|\le M\left|\frac{z}{z_0}\right|^n anznMz0zn而级数 ∑ n = 1 ∞ ∣ z z 0 ∣ n \displaystyle \sum_{n=1}^\infty \left|\frac{z}{z_0}\right|^n n=1z0zn是收敛的,故 ∑ n = 1 ∞ a n z n \displaystyle \sum_{n=1}^\infty a_nz^n n=1anzn绝对收敛。接下来的所有讨论同实幂级数一致,就有收敛半径的概念

收敛半径
(1)如果存在正数 R R R,当 ∣ z ∣ < R |z|<R z<R时, ∑ n = 0 ∞ a n z n \displaystyle \sum_{n=0}^\infty a_n z^n n=0anzn绝对收敛, ∣ z ∣ > R |z|>R z>R时, ∑ n = 0 ∞ a n z n \displaystyle \sum_{n=0}^\infty a_n z^n n=0anzn发散,则称幂级数 ∑ n = 0 ∞ a n z n \displaystyle \sum_{n=0}^\infty a_n z^n n=0anzn的收敛半径为 R R R R R R是幂级数 ∑ n = 0 ∞ a n z n \displaystyle \sum_{n=0}^\infty a_n z^n n=0anzn的收敛半径
(2)如果对任意的 ∣ z ∣ > 0 |z|>0 z>0,幂级数 ∑ n = 0 ∞ a n z n \displaystyle \sum_{n=0}^\infty a_n z^n n=0anzn都发散,则称幂级数 ∑ n = 0 ∞ a n z n \displaystyle \sum_{n=0}^\infty a_n z^n n=0anzn的收敛半径为0
(3)如果对任意的复数 z z z ∑ n = 0 ∞ a n z n \displaystyle \sum_{n=0}^\infty a_n z^n n=0anzn都绝对收敛,则称幂级数 ∑ n = 0 ∞ a n z n \displaystyle \sum_{n=0}^\infty a_n z^n n=0anzn的收敛半径为 + ∞ +\infty +

由于幂级数在圆盘 ∣ z ∣ < R |z|<R z<R内是绝对收敛的,这个圆盘我们称为收敛圆盘,因此其收敛半径和实幂级数 ∑ n = 0 ∞ ∣ a n ∣ x n \sum_{n=0}^\infty |a_n|x^n n=0anxn是一致的,套用数学分析中幂级数收敛半径的求法即可得到复级数收敛半径的求法。这里不再赘述。

阿贝尔定理:幂级数 ∑ n = 0 ∞ a n z n \displaystyle \sum_{n=0}^\infty a_n z^n n=0anzn在其收敛圆盘 ∣ z ∣ < R |z|<R z<R上内闭一致收敛
证明与实幂级数也是一致的,这里不再赘述。

于是,在收敛圆盘内,幂级数无穷次逐项可导,并且类似于实幂级数,求导收敛半径都不变。另外,在收敛圆盘内还可以逐项积分。并且通过逐项求导,令 f ( z ) = ∑ n = 0 ∞ a n z n \displaystyle f(z)=\sum_{n=0}^\infty a_nz^n f(z)=n=0anzn,就有 f ( p ) ( z ) = ∑ n = p ∞ a n n ! ( n − p ) ! z n − p f^{(p)}(z)=\sum_{n=p}^\infty a_n\frac{n!}{(n-p)!}z^{n-p} f(p)(z)=n=pan(np)!n!znp z = 0 z=0 z=0,就可以到 f ( p ) ( z ) = f ( p ) ( 0 ) p ! f^{(p)}(z)=\frac{f^{(p)}(0)}{p!} f(p)(z)=p!f(p)(0)

解析函数的幂级数展开

满足何种条件复函数 f ( z ) f(z) f(z) z = 0 z=0 z=0的某个邻域 B ( 0 , r ) B(0,r) B(0,r)上可以展成幂级数呢?很显然,由阿贝尔定理,要展成幂级数, f ( z ) f(z) f(z)必须在 0 0 0处解析,下面我们证明这也是充分条件。

定理6.1 f ( z ) f(z) f(z) B ( 0 , r ) B(0,r) B(0,r)上解析,则 f ( z ) f(z) f(z) B ( 0 , r ) B(0,r) B(0,r)处可以展成泰勒级数 f ( z ) = ∑ n = 0 ∞ f ( n ) ( 0 ) n ! z n f(z)=\sum_{n=0}^\infty \frac{f^{(n)}(0)}{n!}z^n f(z)=n=0n!f(n)(0)zn并且该展开式是唯一的

证:
对于任意的 δ < r \delta<r δ<r,任取 δ ′ ∈ ( δ , r ) \delta^\prime\in(\delta,r) δ(δ,r),则对于任意的 ∣ z ∣ < δ |z|<\delta z<δ,由柯西积分公式,有 f ( z ) = 1 2 π i ∫ ∣ ξ ∣ = δ ′ f ( ξ ) ξ − z d ξ = 1 2 π i ∫ ∣ ξ ∣ = δ ′ f ( ξ ) ξ 1 1 − z ξ d ξ \begin{aligned} &f(z)=\frac{1}{2\pi i}\int_{|\xi|=\delta^\prime}\frac{f(\xi)}{\xi-z}d\xi=\frac{1}{2\pi i}\int_{|\xi|=\delta^\prime}\frac{f(\xi)}{\xi}\frac{1}{1-\frac{z}{\xi}}d\xi \end{aligned} f(z)=2πi1ξ=δξzf(ξ)dξ=2πi1ξ=δξf(ξ)1ξz1dξ由于当 ∣ ξ ∣ = δ ′ |\xi|=\delta^\prime ξ=δ ∣ z ξ ∣ ≤ δ δ ′ = 1 \left|\frac{z}{\xi}\right|\le \frac{\delta}{\delta^\prime}=1 ξzδδ=1 ∑ n = 0 ∞ ( z ξ ) n \displaystyle \sum_{n=0}^\infty(\frac{z}{\xi})^n n=0(ξz)n ∣ ξ ∣ = δ ′ |\xi|=\delta^\prime ξ=δ上一致收敛,故 f ( z ) = 1 2 π i ∫ ∣ ξ ∣ = δ ′ f ( ξ ) ξ ∑ n = 0 ∞ ( z ξ ) n d ξ = 1 2 π i ∑ n = 0 ∞ z n ∫ ∣ ξ ∣ = δ ′ f ( ξ ) ξ n + 1 d ξ \begin{aligned} f(z)=\frac{1}{2\pi i}\int_{|\xi|=\delta^\prime}\frac{f(\xi)}{\xi}\sum_{n=0}^\infty(\frac{z}{\xi})^nd\xi=\frac{1}{2\pi i}\sum_{n=0}^\infty z^n\int_{|\xi|=\delta^\prime}\frac{f(\xi)}{\xi^{n+1}}d\xi \end{aligned} f(z)=2πi1ξ=δξf(ξ)n=0(ξz)ndξ=2πi1n=0znξ=δξn+1f(ξ)dξ ∫ ∣ ξ ∣ = δ ′ f ( ξ ) ξ n + 1 d ξ = 2 π i n ! f ( n ) ( 0 ) \int_{|\xi|=\delta^\prime}\frac{f(\xi)}{\xi^{n+1}}d\xi=\frac{2\pi i}{n!}f^{(n)}(0) ξ=δξn+1f(ξ)dξ=n!2πif(n)(0)代入即可证得结论,唯一性逐次求导加待定系数即可证得

例5.1 f ( z ) = e z f(z)=e^z f(z)=ez z = 0 z=0 z=0处的泰勒级数及其收敛半径

解:
由于 f ( p ) ( z ) = e z f^{(p)}(z)=e^z f(p)(z)=ez f ( p ) ( 0 ) = 1 f^{(p)}(0)=1 f(p)(0)=1,并且 f ( z ) f(z) f(z)在整个复平面上解析,因此在整个复平面上 f ( z ) = ∑ n = 0 ∞ z n n ! f(z)=\sum_{n=0}^\infty\frac{z^n}{n!} f(z)=n=0n!zn收敛半径为 + ∞ +\infty +

从例5.1可以看出,实指数函数 y = e x y=e^x y=ex的泰勒级数是 w = e z w=e^z w=ez的泰勒级数局限于实轴的特殊情形。

例5.2 f ( z ) = sin ⁡ z f(z)=\sin z f(z)=sinz f ( z ) = cos ⁡ z f(z)=\cos z f(z)=cosz z = 0 z=0 z=0处的泰勒级数

解:
cos ⁡ z = e i z + e − i z 2 \cos z=\frac{e^{iz}+e^{-iz}}{2} cosz=2eiz+eiz,而
e i z = ∑ n = 0 ∞ i n z n n ! e − i z = ∑ n = 0 ∞ ( − 1 ) n i n z n n ! e i z + e − i z 2 = 1 2 ∑ n = 0 ∞ 2 i 2 n z 2 n ( 2 n ) ! = ∑ n = 0 ∞ ( − 1 ) n z 2 n ( 2 n ) ! e^{iz}=\sum_{n=0}^\infty \frac{i^n z^n}{n!}\\ e^{-iz}=\sum_{n=0}^\infty \frac{(-1)^n i^nz^n}{n!}\\ \frac{e^{iz}+e^{-iz}}{2}=\frac{1}{2}\sum_{n=0}^\infty \frac{2i^{2n}z^{2n}}{(2n)!}=\sum_{n=0}^\infty\frac{(-1)^nz^{2n}}{(2n)!} eiz=n=0n!inzneiz=n=0n!(1)ninzn2eiz+eiz=21n=0(2n)!2i2nz2n=n=0(2n)!(1)nz2n如果采用求 0 0 0处各阶导数得到的也是同一个泰勒级数,收敛半径为 ∞ \infty sin ⁡ z = e i z − e − i z 2 i \sin z=\frac{e^{iz}-e^{-iz}}{2i} sinz=2ieizeiz,因此 e i z − e − i z 2 i = 1 2 i ∑ n = 1 ∞ 2 i 2 n − 1 z 2 n − 1 ( 2 n − 1 ) ! = ∑ n = 1 ∞ ( − 1 ) n − 1 z 2 n − 1 ( 2 n − 1 ) ! \frac{e^{iz}-e^{-iz}}{2i}=\frac{1}{2i}\sum_{n=1}^\infty\frac{2i^{2n-1}z^{2n-1}}{(2n-1)!}=\sum_{n=1}^\infty\frac{(-1)^{n-1}z^{2n-1}}{(2n-1)!} 2ieizeiz=2i1n=1(2n1)!2i2n1z2n1=n=1(2n1)!(1)n1z2n1采用求 0 0 0处各阶导数得到的也是同一个泰勒级数,收敛半径为 ∞ \infty

例5.3 f ( z ) = ln ⁡ ( z + 1 ) f(z)=\ln(z+1) f(z)=ln(z+1) z = 0 z=0 z=0处的泰勒级数,其中 ln ⁡ ( z ) \ln(z) ln(z)取割破负实轴后在正实轴取实数的单值解析分支

解:
显然 f ( z ) f(z) f(z) ∣ z ∣ < 1 |z|<1 z<1上解析, z = − 1 z=-1 z=1 f ( z ) f(z) f(z)的奇点( f ( z ) f(z) f(z) z = − 1 z=-1 z=1处不解析),故所得的级数收敛半径为 1 1 1,并且由数学归纳法,容易证明 f ( p ) ( z ) = ( − 1 ) p − 1 ( p − 1 ) ! ( z + 1 ) p + 1 f^{(p)}(z)=\frac{(-1)^{p-1}(p-1)!}{(z+1)^{p+1}} f(p)(z)=(z+1)p+1(1)p1(p1)! f ( p ) ( z ) = ( − 1 ) p − 1 ( p − 1 ) ! f^{(p)}(z)=(-1)^{p-1}(p-1)! f(p)(z)=(1)p1(p1)! f ( z ) = ∑ n = 1 ∞ ( − 1 ) n − 1 z n n f(z)=\sum_{n=1}^\infty \frac{(-1)^{n-1}z^n}{n} f(z)=n=1n(1)n1zn其他解析分支的泰勒级数的收敛半径也是1,与以上展示只相差 2 π i 2\pi i 2πi的整数倍

由例5.3逐项求导可以求得 1 ( z + 1 ) p \frac{1}{(z+1)^p} (z+1)p1的泰勒级数,收敛半径也是1

例5.4 ( 1 + z ) α (1+z)^\alpha (1+z)α z = 0 z=0 z=0处的泰勒级数,其中 L n ( z + 1 ) Ln(z+1) Ln(z+1)取在 z = 0 z=0 z=0 0 0 0的单值解析分支

解:
容易求出 z = 0 z=0 z=0处的 p p p阶导数为 α ( α − 1 ) ⋯ ( α − p + 1 ) \alpha(\alpha-1)\cdots(\alpha-p+1) α(α1)(αp+1),就有 ( 1 + z ) α = 1 + ∑ n = 1 ∞ ( α n ) z n (1+z)^\alpha=1+\sum_{n=1}^\infty \left(\begin{matrix}\alpha\\ n\end{matrix}\right)z^n (1+z)α=1+n=1(αn)zn收敛半径为1

这是一般形式的二项式定理

零点的孤立性

如果 f ( z ) f(z) f(z)在区域 D D D上解析, z 0 ∈ D z_0\in D z0D f ( z 0 ) = 0 f(z_0)=0 f(z0)=0,在 z 0 z_0 z0处将 f ( z ) f(z) f(z)展成泰勒级数 f ( z ) = ∑ n = 0 ∞ a n ( z − z 0 ) n f(z)=\sum_{n=0}^\infty a_n(z-z_0)^n f(z)=n=0an(zz0)n那么应该有 a 0 = 0 a_0=0 a0=0,如果 a 0 = a 1 = ⋯ = a n = ⋯ = 0 a_0=a_1=\cdots=a_n=\cdots=0 a0=a1==an==0,那么 f ( z ) f(z) f(z) z 0 z_0 z0的某个邻域 B ( z 0 , r ) B(z_0,r) B(z0,r)上恒为0,如果存在 a n 0 ≠ 0 a_{n_0}\neq 0 an0=0,设 n 0 = min ⁡ { n : a n ≠ 0 } \displaystyle n_0=\min\{n:a_n\neq 0\} n0=min{n:an=0},在 z 0 z_0 z0的某个邻域 B ( z 0 , r ) B(z_0,r) B(z0,r)上,有 f ( z ) = ( z − z 0 ) n 0 ∑ n = n 0 ∞ a n ( z − z 0 ) n − n 0 = ( z − z 0 ) n − n 0 φ ( z ) f(z)=(z-z_0)^{n_0}\sum_{n=n_0}^\infty a_n(z-z_0)^{n-n_0}=(z-z_0)^{n-n_0}\varphi(z) f(z)=(zz0)n0n=n0an(zz0)nn0=(zz0)nn0φ(z)其中 φ ( z ) = ∑ n = n 0 ∞ a n ( z − z 0 ) n − n 0 \displaystyle\varphi(z)=\sum_{n=n_0}^\infty a_n(z-z_0)^{n-n_0} φ(z)=n=n0an(zz0)nn0在该邻域上解析,并且 φ ( z 0 ) ≠ 0 \varphi(z_0)\neq 0 φ(z0)=0。由 φ ( z ) \varphi(z) φ(z)的连续性,存在 z 0 z_0 z0的某个邻域 B ( z 0 , r 2 ) ⊂ B ( z 0 , r ) B(z_0,r_2)\subset B(z_0,r) B(z0,r2)B(z0,r),在其上, φ ( z ) ≠ 0 \varphi(z)\neq 0 φ(z)=0。在这个邻域内,对 z ≠ z 0 z\neq z_0 z=z0 ( z − z 0 ) n − n 0 ≠ 0 (z-z_0)^{n-n_0}\neq 0 (zz0)nn0=0,故 f ( z ) ≠ 0 f(z)\neq 0 f(z)=0,于是 z 0 z_0 z0就是该邻域内唯一的零点。以上的 n 0 n_0 n0称为 z 0 z_0 z0的阶,如果 a 0 = a 1 = ⋯ = a n = ⋯ = 0 a_0=a_1=\cdots=a_n=\cdots=0 a0=a1==an==0。实际上,不难验证, n 0 n_0 n0满足:对 k < n 0 k<n_0 k<n0,有 f ( k ) ( z 0 ) = 0 f^{(k)}(z_0)=0 f(k)(z0)=0 f ( n 0 ) ( z 0 ) ≠ 0 f^{(n_0)}(z_0)\neq 0 f(n0)(z0)=0。解析函数零点的阶可以用导数定义也可以用泰勒级数进行定义。总结以上讨论就得到以下定理:

定理5.2(解析函数零点的孤立性) 如果 f ( z ) f(z) f(z)在区域 D D D上解析, z 0 z_0 z0 D D D的零点,则只可能出现以下两种情况:
(1)存在邻域 B ( z 0 , r ) B(z_0,r) B(z0,r) f ( z ) f(z) f(z)在该邻域上恒为0
(2)存在邻域 B ( z 0 , r ) B(z_0,r) B(z0,r) z 0 z_0 z0 f ( z ) f(z) f(z)在该邻域上唯一的零点,此时,存在正整数 n 0 n_0 n0 f ( 1 ) ( z 0 ) = ⋯ = f ( n 0 − 1 ) ( z 0 ) = 0 , f ( n 0 ) ≠ 0 f^{(1)}(z_0)=\cdots=f^{(n_0-1)}(z_0)=0,f^{(n_0)}\neq 0 f(1)(z0)==f(n01)(z0)=0,f(n0)=0,称 z 0 z_0 z0 f ( z ) f(z) f(z) n 0 n_0 n0阶零点,1阶零点又称为单零点

解析函数的唯一性

引理5.1 如果函数 f ( z ) f(z) f(z)在邻域 K : ∣ z − a ∣ < R K:|z-a|<R K:za<R上解析,并且在 K K K内有 f ( z ) f(z) f(z)的一列零点 { z n } \{z_n\} {zn}收敛于 a a a,则 f ( z ) f(z) f(z) K K K内必恒为0

这由零点的孤立性是显然的

推论5.1 如果函数 f ( z ) , g ( z ) f(z),g(z) f(z),g(z)在邻域 K : ∣ z − a ∣ < R K:|z-a|<R K:za<R上解析,并且存在 K K K内收敛于 a a a的一个点列 { z n } \{z_n\} {zn},满足 f ( z n ) = g ( z n ) , n = 1 , 2 , ⋯ f(z_n)=g(z_n),n=1,2,\cdots f(zn)=g(zn),n=1,2,,则 f ( z ) = g ( z ) ∀ z ∈ K f(z)=g(z) \quad\forall z\in K f(z)=g(z)zK

引理5.2 如果函数 f ( z ) f(z) f(z)在区域 D D D上解析,存在 z 0 z_0 z0的某个邻域 B ( z 0 , r ) ⊂ D B(z_0,r)\subset D B(z0,r)D,在其上 f ( z ) f(z) f(z)恒为0,则 f ( z ) f(z) f(z)在区域 D D D上恒为0

证:我们采用圆链法进行证明,对任意的 z ∈ D z\in D zD,取 z 0 z_0 z0 z z z的一条折线 L L L,显然 L L L是有界闭集, L L L D c D^c Dc有正距离 δ \delta δ,作 z 0 , z z_0,z z0,z的分点 z 0 , z 1 , z 2 , ⋯   , z n = z z_0,z_1,z_2,\cdots,z_n=z z0,z1,z2,,zn=z,使得相邻两点的距离小于 δ 2 \frac{\delta}{2} 2δ,如下图
在这里插入图片描述
n n n个邻域 K i = B ( z i − 1 , δ 2 ) ⊂ D ( i = 1 , 2 , ⋯   , n ) K_i=B(z_{i-1},\frac{\delta}{2})\subset D(i=1,2,\cdots,n) Ki=B(zi1,2δ)D(i=1,2,,n),则由引理5.1, f ( z ) f(z) f(z) K 1 K_1 K1内恒为0, z 1 z_1 z1也在 K 1 K_1 K1内,因而 K 2 K_2 K2也满足引理5.1的条件,应用引理5.1,得到 f ( z ) f(z) f(z) K 2 K_2 K2内也恒为0,一直传递到 K n K_n Kn即可证得 f ( z ) = 0 f(z)=0 f(z)=0

定理5.3(解析函数的唯一性) 如果 f ( z ) , g ( z ) f(z),g(z) f(z),g(z)在区域 D D D内解析,点集 { z ∈ D : f ( z ) = g ( z ) } \{z\in D:f(z)=g(z)\} {zD:f(z)=g(z)} D D D内有聚点,即:存在点列 { z n } \{z_n\} {zn},满足 z n ∈ D , f ( z n ) = g ( z n ) , n = 1 , 2 , ⋯ z_n\in D,f(z_n)=g(z_n),n=1,2,\cdots znD,f(zn)=g(zn),n=1,2,,并且 lim ⁡ n → ∞ z n = z 0 , z 0 ∈ D \displaystyle\lim_{n\to\infty}z_n=z_0,z_0\in D nlimzn=z0,z0D,那么,在 D D D内恒有 f ( z ) = g ( z ) f(z)=g(z) f(z)=g(z)

证:
如果存在点列 { z n } \{z_n\} {zn},满足 z n ∈ D , f ( z n ) = g ( z n ) , n = 1 , 2 , ⋯ z_n\in D,f(z_n)=g(z_n),n=1,2,\cdots znD,f(zn)=g(zn),n=1,2,,并且 lim ⁡ n → ∞ z n = z 0 , z 0 ∈ D \displaystyle\lim_{n\to\infty}z_n=z_0,z_0\in D nlimzn=z0,z0D,那么由引理5.1,在 z 0 z_0 z0的某个邻域 B ( z 0 , r ) ⊂ D B(z_0,r)\subset D B(z0,r)D上,恒有 F ( z ) = f ( z ) − g ( z ) = 0 F(z)=f(z)-g(z)=0 F(z)=f(z)g(z)=0,那么由引理5.2,对任意的 z ∈ D z\in D zD,都有 F ( z ) = 0 F(z)=0 F(z)=0,证毕

例5.5 在实轴上满足 f ( z ) = e z f(z)=e^z f(z)=ez的解析函数是惟一的,在实轴上满足 f ( z ) = sin ⁡ z = cos ⁡ z f(z)=\sin z=\cos z f(z)=sinz=cosz的解析函数也是唯一的

对于不加条件限制的复变函数,我们无法通过局部的取值来推算整体的取值,然而对于解析函数而言不是如此,定理5.3说明,解析函数在区域 D D D内的取值,完全由其内部某点邻域的取值决定。

例5.6 在原点解析,而在 z = 1 n ( n = 1 , 2 , ⋯   ) z=\frac{1}{n}(n=1,2,\cdots) z=n1(n=1,2,)处取下列各组值的函数是否存在?
(1) 0 , 1 2 , 0 , 1 4 , 0 , 1 6 , ⋯ 0,\frac{1}{2},0,\frac{1}{4},0,\frac{1}{6},\cdots 0,21,0,41,0,61,
(2) 1 2 , 1 2 , 1 4 , 1 4 , 1 6 , 1 6 , ⋯ \frac{1}{2},\frac{1}{2},\frac{1}{4},\frac{1}{4},\frac{1}{6},\frac{1}{6},\cdots 21,21,41,41,61,61,
(3) 1 2 , 2 3 , 3 4 , 4 5 , 5 6 , ⋯ \frac{1}{2},\frac{2}{3},\frac{3}{4},\frac{4}{5},\frac{5}{6},\cdots 21,32,43,54,65,

解:
(1)不存在,假设该函数 f ( z ) f(z) f(z)存在,则其与 g ( z ) = 0 g(z)=0 g(z)=0满足 f ( 1 2 n − 1 ) = g ( 1 2 n − 1 ) , n = 1 , 2 , ⋯ f(\frac{1}{2n-1})=g(\frac{1}{2n-1}),n=1,2,\cdots f(2n11)=g(2n11),n=1,2,,而 lim ⁡ n → ∞ 1 2 n − 1 = 0 \displaystyle\lim_{n\to\infty}\frac{1}{2n-1}=0 nlim2n11=0,则 f ( z ) f(z) f(z) 0 0 0的某个邻域上应当恒为0,但 g ( 1 2 n ) ≠ 0 , n = 1 , 2 , ⋯ g(\frac{1}{2n})\neq 0,n=1,2,\cdots g(2n1)=0,n=1,2,
(2)不存在,假设这样的函数 f ( z ) f(z) f(z)存在,令 g ( z ) = z z + 1 g(z)=\frac{z}{z+1} g(z)=z+1z,则 f ( 1 2 n − 1 ) = g ( 1 2 n − 1 ) f(\frac{1}{2n-1})=g(\frac{1}{2n-1}) f(2n11)=g(2n11),而 lim ⁡ n → ∞ 1 2 n − 1 = 0 \displaystyle\lim_{n\to\infty}\frac{1}{2n-1}=0 nlim2n11=0,则在 0 0 0的某个邻域上应当成立 g ( z ) = f ( z ) g(z)=f(z) g(z)=f(z),而 g ( 1 2 n ) ≠ f ( 1 2 n ) , n = 1 , 2 , ⋯ g(\frac{1}{2n})\neq f(\frac{1}{2n}),n=1,2,\cdots g(2n1)=f(2n1),n=1,2,,因此这样的函数不存在
(3)存在, f ( z ) = 1 1 + z f(z)=\frac{1}{1+z} f(z)=1+z1

洛朗级数与孤立奇点

解析函数的洛朗展式

双边幂级数:形如 ∑ n = 1 ∞ c − n ( z − a ) − n + ∑ n = 0 ∞ c n ( z − a ) n \displaystyle\sum_{n=1}^\infty c_{-n}(z-a)^{-n}+\sum_{n=0}^\infty c_n(z-a)^n n=1cn(za)n+n=0cn(za)n的级数

从构造来看,我们可以把双边幂级数视为两个幂级数之和 f ( z ) = ∑ n = 1 ∞ c − n ( z − a ) − n + ∑ n = 0 ∞ c n ( z − a ) n g ( z ) = ∑ n = 1 ∞ c − n ( z − a ) − n h ( z ) = ∑ n = 0 ∞ c n ( z − a ) n f(z)=\sum_{n=1}^\infty c_{-n}(z-a)^{-n}+\sum_{n=0}^\infty c_n(z-a)^n\\ g(z)=\sum_{n=1}^\infty c_{-n}(z-a)^{-n}\\ h(z)=\sum_{n=0}^\infty c_n(z-a)^n f(z)=n=1cn(za)n+n=0cn(za)ng(z)=n=1cn(za)nh(z)=n=0cn(za)n其中 g ( z ) g(z) g(z)作代换 u = 1 z − a u=\frac{1}{z-a} u=za1,就有 g ( z ) = g ( u ) = ∑ n = 1 ∞ c − n u n g(z)=g(u)=\sum_{n=1}^\infty c_{-n}u^n g(z)=g(u)=n=1cnun如果 g ( u ) g(u) g(u)的收敛半径为 R 1 R_1 R1,则当 ∣ u ∣ < R 1 |u|<R_1 u<R1时,级数绝对收敛,并且级数在 { u : ∣ u ∣ < R } \{u:|u|<R\} {u:u<R}上内闭一致收敛,而 ∣ u ∣ < R 1 |u|<R_1 u<R1等价于 ∣ z − a ∣ > R 1 |z-a|>R_1 za>R1,故 g ( z ) g(z) g(z) { z : ∣ z − a ∣ > R 1 } \{z:|z-a|>R_1\} {z:za>R1}上内闭一致收敛,同理, h ( z ) h(z) h(z)的收敛半径为 R 2 R_2 R2 h ( z ) h(z) h(z) { z : ∣ z − a ∣ < R 2 } \{z:|z-a|<R_2\} {z:za<R2}上绝对收敛且内闭一致收敛。如果 R 1 < R 2 R_1<R_2 R1<R2,那么 f ( z ) f(z) f(z) { z : R 1 < ∣ z − a ∣ < R 2 } \{z:R_1<|z-a|<R_2\} {z:R1<za<R2}上绝对收敛且内闭一致收敛,该区域称为称为 f ( z ) f(z) f(z)的收敛圆环,并且很显然 f ( z ) f(z) f(z)在收敛圆环上解析,现在我们考虑一个问题:如果 f ( z ) f(z) f(z)在圆环 D = { z : r < ∣ z ∣ < R } ( r < R ) D=\{z:r<|z|<R\}(r<R) D={z:r<z<R}(r<R)上解析, f ( z ) f(z) f(z)能否在 D D D上展开成双边幂级数呢?答案是肯定的,并且证明和泰勒级数是类似的。

定理5.4(洛朗定理) f ( z ) f(z) f(z) D = { z : r < ∣ z ∣ < R } D=\{z:r<|z|<R\} D={z:r<z<R}上解析,则 f ( z ) f(z) f(z) D D D上可唯一展开成 f ( z ) = ∑ n = − ∞ ∞ c n ( z − a ) − n f(z)=\sum_{n=-\infty}^\infty c_{n}(z-a)^{-n} f(z)=n=cn(za)n其中, c n = 1 2 π i ∫ ∣ ξ − a ∣ = ρ f ( ξ ) ( ξ − a ) n + 1 , n = 0 , ± 1 , ± 2 , ⋯ \displaystyle c_n=\frac{1}{2\pi i}\int_{|\xi-a|=\rho}\frac{f(\xi)}{(\xi-a)^{n+1}},n=0,\pm 1,\pm 2,\cdots cn=2πi1ξa=ρ(ξa)n+1f(ξ),n=0,±1,±2,

证:这里不妨设 a = 0 a=0 a=0 a ≠ 0 a\neq 0 a=0时作一个平移即可。任取 z ∈ D z\in D zD,取 r < r ′ < ∣ z ∣ < R ′ < R r<r^\prime<|z|<R^\prime<R r<r<z<R<R,如下图
在这里插入图片描述
由柯西积分公式,有 2 π i . f ( z ) = ∫ ∣ ξ ∣ = R ′ f ( ξ ) ξ − z d ξ − ∫ ∣ ξ ∣ = r ′ f ( ξ ) ξ − z d ξ = ∫ ∣ ξ ∣ = R ′ f ( ξ ) / ξ 1 − z ξ d ξ + 1 z ∫ ∣ ξ ∣ = r ′ f ( ξ ) 1 − ξ z d ξ = ∫ ∣ ξ ∣ = R ′ f ( ξ ) ξ ∑ n = 0 ∞ ( z ξ ) n d ξ + 1 z ∫ ∣ ξ ∣ = r ′ f ( ξ ) ∑ n = 0 ∞ ( ξ z ) n d ξ \begin{aligned} 2\pi i.f(z)=&\int_{|\xi|=R^\prime}\frac{f(\xi)}{\xi-z}d\xi-\int_{|\xi|=r^\prime}\frac{f(\xi)}{\xi-z}d\xi\\ =&\int_{|\xi|=R^\prime}\frac{f(\xi)/\xi}{1-\frac{z}{\xi}}d\xi+\frac{1}{z}\int_{|\xi|=r^\prime}\frac{f(\xi)}{1-\frac{\xi}{z}}d\xi\\ =&\int_{|\xi|=R^\prime}\frac{f(\xi)}{\xi}\sum_{n=0}^\infty(\frac{z}{\xi})^nd\xi+\frac{1}{z}\int_{|\xi|=r^\prime}f(\xi)\sum_{n=0}^\infty(\frac{\xi}{z})^nd\xi \end{aligned} 2πi.f(z)===ξ=Rξzf(ξ)dξξ=rξzf(ξ)dξξ=R1ξzf(ξ)/ξdξ+z1ξ=r1zξf(ξ)dξξ=Rξf(ξ)n=0(ξz)ndξ+z1ξ=rf(ξ)n=0(zξ)ndξ在圆周 ∣ ξ ∣ = R ′ |\xi|=R^\prime ξ=R上, ∣ z ξ ∣ = ∣ z ∣ R ′ < 1 |\frac{z}{\xi}|=\frac{|z|}{R^\prime}<1 ξz=Rz<1,故级数 ∑ n = 0 ∞ ( z ξ ) n \displaystyle \sum_{n=0}^\infty(\frac{z}{\xi})^n n=0(ξz)n在圆周 ∣ ξ ∣ = R ′ |\xi|=R^\prime ξ=R上一致收敛,故 ∫ ∣ ξ ∣ = R ′ f ( ξ ) ξ ∑ n = 0 ∞ ( z ξ ) n d ξ = ∑ n = 0 ∞ z n ∫ ∣ ξ ∣ = R ′ f ( ξ ) ξ n + 1 d ξ \int_{|\xi|=R^\prime}\frac{f(\xi)}{\xi}\sum_{n=0}^\infty(\frac{z}{\xi})^nd\xi=\sum_{n=0}^\infty z^n\int_{|\xi|=R^\prime}\frac{f(\xi)}{\xi^{n+1}}d\xi ξ=Rξf(ξ)n=0(ξz)ndξ=n=0znξ=Rξn+1f(ξ)dξ同理 ∫ ∣ ξ ∣ = r ′ f ( ξ ) ∑ n = 0 ∞ ( ξ z ) n d ξ = ∑ n = 0 ∞ z − n ∫ ∣ ξ ∣ = r ′ f ( ξ ) ξ n d ξ \int_{|\xi|=r^\prime}f(\xi)\sum_{n=0}^\infty(\frac{\xi}{z})^nd\xi=\sum_{n=0}^\infty z^{-n}\int_{|\xi|=r^\prime}f(\xi)\xi^nd\xi ξ=rf(ξ)n=0(zξ)ndξ=n=0znξ=rf(ξ)ξndξ c n = 1 2 π i ∫ ∣ ξ ∣ = ρ f ( ξ ) ξ n + 1 d ξ , n = 0 , ± 1 , ± 2 , ± 3 , ⋯ \displaystyle c_{n}=\frac{1}{2\pi i}\int_{|\xi|=\rho}\frac{f(\xi)}{\xi^{n+1}}d\xi,n=0,\pm 1,\pm 2,\pm 3,\cdots cn=2πi1ξ=ρξn+1f(ξ)dξ,n=0,±1,±2,±3,,其中 ρ \rho ρ为任意介于 r r r R R R之间的实数,由柯西积分定理,不难证明 c n = 1 2 π i ∫ ∣ ξ ∣ = ρ f ( ξ ) ξ n + 1 d ξ = 1 2 π i ∫ ∣ ξ ∣ = r ′ f ( ξ ) ξ n + 1 d ξ = 1 2 π i ∫ ∣ ξ ∣ = R ′ f ( ξ ) ξ n + 1 d ξ n = 0 , ± 1 , ± 2 , ± 3 , ⋯ c_{n}=\frac{1}{2\pi i}\int_{|\xi|=\rho}\frac{f(\xi)}{\xi^{n+1}}d\xi=\frac{1}{2\pi i}\int_{|\xi|=r^\prime}\frac{f(\xi)}{\xi^{n+1}}d\xi=\frac{1}{2\pi i}\int_{|\xi|=R^\prime}\frac{f(\xi)}{\xi^{n+1}}d\xi\\n=0,\pm 1,\pm 2,\pm 3,\cdots cn=2πi1ξ=ρξn+1f(ξ)dξ=2πi1ξ=rξn+1f(ξ)dξ=2πi1ξ=Rξn+1f(ξ)dξn=0,±1,±2,±3, f ( z ) = ∑ n = − ∞ + ∞ c n z n f(z)=\sum_{n=-\infty}^{+\infty}c_nz^n f(z)=n=+cnzn再证明唯一性即可

以上展式称为解析函数的洛朗展式

奇点

奇点 f ( z ) f(z) f(z) z 0 z_0 z0处不解析,但在 z 0 z_0 z0的任意邻域上都有 f ( z ) f(z) f(z)的解析点,则称 z 0 z_0 z0 f ( z ) f(z) f(z)的奇点

孤立奇点:存在 z 0 z_0 z0的某个邻域 B ( z 0 , r ) B(z_0,r) B(z0,r) z 0 z_0 z0 f ( z ) f(z) f(z)在该邻域上的唯一奇点,则称 z 0 z_0 z0 f ( z ) f(z) f(z)的孤立奇点,如果 z 0 z_0 z0 f ( z ) f(z) f(z)的奇点,但不是孤立奇点,则称 z 0 z_0 z0 f ( z ) f(z) f(z)的非孤立奇点

解析部分和主要部分:如果 z 0 z_0 z0 f ( z ) f(z) f(z)的孤立奇点,设 f ( z ) f(z) f(z) 0 < ∣ z − z 0 ∣ < r 0<|z-z_0|<r 0<zz0<r上解析,则 f ( z ) f(z) f(z) 0 < ∣ z − z 0 ∣ < r 0<|z-z_0|<r 0<zz0<r上可展成洛朗展示 f ( z ) = ∑ n = 1 ∞ c − n ( z − z 0 ) − n + ∑ n = 0 ∞ c n ( z − z 0 ) n f(z)=\sum_{n=1}^\infty c_{-n}(z-z_0)^{-n}+\sum_{n=0}^\infty c_n (z-z_0)^n f(z)=n=1cn(zz0)n+n=0cn(zz0)n ∑ n = 1 ∞ c − n ( z − z 0 ) − n \displaystyle \sum_{n=1}^\infty c_{-n}(z-z_0)^{-n} n=1cn(zz0)n称为 f ( z ) f(z) f(z) z 0 z_0 z0处的主要部分, ∑ n = 0 ∞ c n ( z − z 0 ) n \displaystyle\sum_{n=0}^\infty c_n (z-z_0)^n n=0cn(zz0)n称为 f ( z ) f(z) f(z) z 0 z_0 z0处的解析部分,奇点的性质由主要部分决定

可去奇点 z 0 z_0 z0 f ( z ) f(z) f(z)的孤立奇点,如果 f ( z ) f(z) f(z) z 0 z_0 z0处的主要部分为0,则称 z 0 z_0 z0 f ( z ) f(z) f(z)的可去奇点,如果 z 0 z_0 z0 f ( z ) f(z) f(z)的可去奇点,在 z 0 z_0 z0的某个去心邻域上可展成 f ( z ) = ∑ n = 0 ∞ c n ( z − z 0 ) n f(z)=\sum_{n=0}^\infty c_n (z-z_0)^n f(z)=n=0cn(zz0)n那么 lim ⁡ z → z 0 f ( z ) = c 0 \lim_{z\to z_0}f(z)=c_0 zz0limf(z)=c0补充定义 f ( z 0 ) = c 0 f(z_0)=c_0 f(z0)=c0 f ( z ) f(z) f(z)在该邻域上解析,因而称为是可去奇点

可去奇点的判定 z 0 z_0 z0 f ( z ) f(z) f(z)的孤立奇点,则以下三个命题等价:
(1) z 0 z_0 z0 f ( z ) f(z) f(z)的可去奇点
(2) lim ⁡ z → z 0 f ( z ) = c ( ≠ ∞ ) \displaystyle\lim_{z\to z_0}f(z)=c(\neq\infty) zz0limf(z)=c(=)
(3) f ( z ) f(z) f(z) z 0 z_0 z0的某个去心邻域上有界

证:
(1)推(2),(2)推(3)是显然的,下面证明(3)推(1),如果 f ( z ) f(z) f(z) z 0 z_0 z0的某个邻域 B ( z 0 , r ) B(z_0,r) B(z0,r)上有界,设 ∣ f ( z ) ∣ ≤ M ( ∀ z ∈ B ( z 0 , r ) ) |f(z)|\le M(\forall z\in B(z_0,r)) f(z)M(zB(z0,r)),任取 0 < ρ < r 0<\rho<r 0<ρ<r,对 n ≥ 1 n\ge 1 n1,有 ∣ c − n ∣ = 1 2 π ∣ ∫ ∣ ξ − z 0 ∣ = ρ f ( ξ ) ( ξ − z 0 ) n − 1 d ξ ∣ ≤ 1 2 π ∫ ∣ ξ − z 0 ∣ = ρ ∣ f ( ξ ) ∣ ∣ ξ − z 0 ∣ n − 1 d s ≤ M ρ n \begin{aligned} |c_{-n}|=&\frac{1}{2\pi}\left|\int_{|\xi-z_0|=\rho}f(\xi)(\xi-z_0)^{n-1}d\xi\right|\\ \le&\frac{1}{2\pi}\int_{|\xi-z_0|=\rho}|f(\xi)||\xi-z_0|^{n-1}ds\\ \le&M\rho^n \end{aligned} cn=2π1ξz0=ρf(ξ)(ξz0)n1dξ2π1ξz0=ρf(ξ)ξz0n1dsMρn ρ → 0 \rho\to 0 ρ0,就有 c − n = 0 c_{-n}=0 cn=0,故 z 0 z_0 z0 f ( z ) f(z) f(z)的可去奇点

极点:如果 f ( z ) f(z) f(z) z 0 z_0 z0处的主要部分为 c − m ( z − z 0 ) m + ⋯ + c − 1 z − z 0 \frac{c_{-m}}{(z-z_0)^m}+\cdots+\frac{c_{-1}}{z-z_0} (zz0)mcm++zz0c1则称 z 0 z_0 z0 f ( z ) f(z) f(z)的极点, m m m z 0 z_0 z0的阶,或称 z 0 z_0 z0 f ( z ) f(z) f(z) m m m阶极点

极点的判定 z 0 z_0 z0 f ( z ) f(z) f(z)的孤立奇点,则以下命题等价:
(1) z 0 z_0 z0 f ( z ) f(z) f(z) m m m阶极点
(2)存在 z 0 z_0 z0的某个邻域 B ( z 0 , r ) B(z_0,r) B(z0,r)上解析的函数 λ ( z ) \lambda(z) λ(z) λ ( z 0 ) ≠ 0 \lambda(z_0)\neq 0 λ(z0)=0,使得在去心邻域 B ( z 0 , r ) / { z 0 } B(z_0,r)/\{z_0\} B(z0,r)/{z0} f ( z ) = λ ( z ) ( z − z 0 ) m f(z)=\frac{\lambda(z)}{(z-z_0)^m} f(z)=(zz0)mλ(z)(3) g ( z ) = 1 f ( z ) g(z)=\frac{1}{f(z)} g(z)=f(z)1 z 0 z_0 z0 m m m阶零点(可去奇点当解析点看)

证:
(1) → \rightarrow (2): f ( z ) f(z) f(z)在某个去心邻域 B ( z 0 , r ) / { z 0 } B(z_0,r)/\{z_0\} B(z0,r)/{z0}上可展为洛朗展式 f ( z ) = ∑ n = − m + ∞ c n ( z − z 0 ) n f(z)=\sum_{n=-m}^{+\infty}c_{n}(z-z_0)^n f(z)=n=m+cn(zz0)n λ ( z ) = ∑ n = − m + ∞ c n ( z − z 0 ) n + m \lambda(z)=\sum_{n=-m}^{+\infty}c_{n}(z-z_0)^{n+m} λ(z)=n=m+cn(zz0)n+m显然 λ ( z 0 ) = c − m ≠ 0 \lambda(z_0)=c_{-m}\neq 0 λ(z0)=cm=0,并且在去心邻域 B ( z 0 , r ) / { z 0 } B(z_0,r)/\{z_0\} B(z0,r)/{z0} f ( z ) = λ ( z ) ( z − z 0 ) m f(z)=\frac{\lambda(z)}{(z-z_0)^m} f(z)=(zz0)mλ(z)(2) → \to (3):如果存在 z 0 z_0 z0的某个邻域 B ( z 0 , r ) B(z_0,r) B(z0,r)上解析的函数 λ ( z ) \lambda(z) λ(z) λ ( z 0 ) ≠ 0 \lambda(z_0)\neq 0 λ(z0)=0,使得在去心邻域 B ( z 0 , r ) / { z 0 } B(z_0,r)/\{z_0\} B(z0,r)/{z0} f ( z ) = λ ( z ) ( z − z 0 ) m f(z)=\frac{\lambda(z)}{(z-z_0)^m} f(z)=(zz0)mλ(z)则存在邻域 B ( z 0 , r ′ ) ⊂ B ( z 0 , r ) B(z_0,r^\prime)\subset B(z_0,r) B(z0,r)B(z0,r) λ ( z ) ≠ 0 , ∀ z ∈ B ( z 0 , r ′ ) \lambda(z)\neq 0,\forall z\in B(z_0,r^\prime) λ(z)=0,zB(z0,r),在去心邻域 B ( z 0 , r ′ ) / { z 0 } B(z_0,r^\prime)/\{z_0\} B(z0,r)/{z0} g ( z ) = 1 f ( z ) = ( z − z 0 ) m λ ( z ) g(z)=\frac{1}{f(z)}=\frac{(z-z_0)^m}{\lambda(z)} g(z)=f(z)1=λ(z)(zz0)m由此不难看出 z 0 z_0 z0 g ( z ) g(z) g(z) m m m阶零点
(3) → \to (1):如果 g ( z ) = 1 f ( z ) g(z)=\frac{1}{f(z)} g(z)=f(z)1 z 0 z_0 z0 m m m阶零点,那么存在 z 0 z_0 z0的某个邻域 B ( z 0 , r ) B(z_0,r) B(z0,r),在其上可展成泰勒级数 g ( z ) = c m ( z − z 0 ) m + c m + 1 ( z − z 0 ) m + 1 + ⋯ g(z)=c_m(z-z_0)^m+c_{m+1}(z-z_0)^{m+1}+\cdots g(z)=cm(zz0)m+cm+1(zz0)m+1+其中 c m ≠ 0 c_m\neq 0 cm=0,则令 λ ( z ) = c m + c m + 1 ( z − z 0 ) + c m + 2 ( z − z 0 ) 2 + ⋯ \lambda(z)=c_m+c_{m+1}(z-z_0)+c_{m+2}(z-z_0)^2+\cdots λ(z)=cm+cm+1(zz0)+cm+2(zz0)2+并且存在邻域 B ( z 0 , r ′ ) ⊂ B ( z 0 , r ) B(z_0,r^\prime)\subset B(z_0,r) B(z0,r)B(z0,r),在其上 λ ( z ) ≠ 0 \lambda(z)\neq 0 λ(z)=0,于是, 0 < ∣ z − z 0 ∣ < r ′ 0<|z-z_0|<r^\prime 0<zz0<r f ( z ) = 1 g ( z ) = 1 ( z − z 0 ) m 1 λ ( z ) f(z)=\frac{1}{g(z)}=\frac{1}{(z-z_0)^m}\frac{1}{\lambda(z)} f(z)=g(z)1=(zz0)m1λ(z)1由于 λ ( z ) \lambda(z) λ(z) B ( z 0 , r ′ ) B(z_0,r^\prime) B(z0,r)上解析, 1 λ ( z ) \frac{1}{\lambda(z)} λ(z)1 B ( z 0 , r ′ ) B(z_0,r^\prime) B(z0,r)上解析,故可以展成泰勒级数 1 λ ( z ) = a 0 + a 1 ( z − z 0 ) + a 2 ( z − z 0 ) 2 + ⋯ \frac{1}{\lambda(z)}=a_0+a_1(z-z_0)+a_2(z-z_0)^2+\cdots λ(z)1=a0+a1(zz0)+a2(zz0)2+ a 0 ≠ 0 a_0\neq 0 a0=0,从而 0 < ∣ z − z 0 ∣ < r ′ 0<|z-z_0|<r^\prime 0<zz0<r f ( z ) = a 0 ( z − z 0 ) m + ⋯ f(z)=\frac{a_0}{(z-z_0)^m}+\cdots f(z)=(zz0)ma0+ z 0 z_0 z0 f ( z ) f(z) f(z) m m m阶极点

由上面的定理不难看出, z 0 z_0 z0 f ( z ) f(z) f(z)的极点的充要条件是 lim ⁡ z → z 0 f ( z ) = ∞ \lim_{z\to z_0}f(z)=\infty zz0limf(z)=不过该定义的缺陷在于无法判断极点的阶数

本质极点:不是可去奇点和极点的孤立奇点是本质极点

本质极点的判定 z 0 z_0 z0 f ( z ) f(z) f(z)的本质极点的充要条件有
(1) lim ⁡ z → z 0 f ( z ) ≠ { b ( 有 限 数 ) ∞ \lim_{z\to z_0}f(z)\neq\begin{cases} b(有限数)\\ \infty \end{cases} zz0limf(z)={b()(2)对任意的 a ∈ C ‾ a\in\overline{C} aC,存在点列 { z n } \{z_n\} {zn}, lim ⁡ n → ∞ z n = z 0 \displaystyle\lim_{n\to\infty}z_n=z_0 nlimzn=z0 lim ⁡ n → ∞ f ( z n ) = a \displaystyle\lim_{n\to\infty}f(z_n)=a nlimf(zn)=a

证:
a = ∞ a=\infty a=的情形:由于 z 0 z_0 z0不是 f ( z ) f(z) f(z)的可去奇点,那么 f ( z ) f(z) f(z) z 0 z_0 z0的任意去心邻域上都无界,由此就可以取出点列 { z n } \{z_n\} {zn} lim ⁡ n → ∞ z n = z 0 \displaystyle\lim_{n\to\infty}z_n=z_0 nlimzn=z0,满足 lim ⁡ n → ∞ f ( z n ) = ∞ \lim_{n\to\infty}f(z_n)=\infty nlimf(zn)= a a a为有限数的情形:如果 z 0 z_0 z0的任意去心邻域都存在点 z ′ z^\prime z f ( z ′ ) = a f(z^\prime)=a f(z)=a,那么结论自然成立
否则,存在去心邻域 B ( z 0 , r ) / { z 0 } B(z_0,r)/\{z_0\} B(z0,r)/{z0},对任意的 z ∈ B ( z 0 , r ) / { z 0 } z\in B(z_0,r)/\{z_0\} zB(z0,r)/{z0},都有 f ( z ) ≠ a f(z)\neq a f(z)=a则在 0 < ∣ z − z 0 ∣ < r 0<|z-z_0|<r 0<zz0<r g ( z ) = 1 f ( z ) − a g(z)=\frac{1}{f(z)-a} g(z)=f(z)a1解析并且 z 0 z_0 z0 g ( z ) g(z) g(z)的本质极点,因为如果首先 z 0 z_0 z0 g ( z ) g(z) g(z)的孤立奇点,并且不是可去奇点,因为如果 z 0 z_0 z0 g ( z ) g(z) g(z)的可去奇点,那么存在复数 c c c lim ⁡ z → z 0 g ( z ) = c \displaystyle\lim_{z\to z_0}g(z)=c zz0limg(z)=c,如果 c ≠ 0 c\neq 0 c=0,那么 lim ⁡ z → z 0 f ( z ) = 1 c \lim_{z\to z_0}f(z)=\frac{1}{c} limzz0f(z)=c1 z 0 z_0 z0 f ( z ) f(z) f(z)的可去奇点,矛盾,如果 c = 0 c=0 c=0,那么 lim ⁡ z → z 0 f ( z ) = ∞ \lim_{z\to z_0}f(z)=\infty limzz0f(z)= z 0 z_0 z0 f ( z ) f(z) f(z)的极点,如果 z 0 z_0 z0 g ( z ) g(z) g(z)的极点,那么 lim ⁡ z → z 0 g ( z ) = ∞ \displaystyle\lim_{z\to z_0}g(z)=\infty zz0limg(z)=,故 lim ⁡ z → z 0 f ( z ) = 0 \displaystyle\lim_{z\to z_0}f(z)=0 zz0limf(z)=0 z 0 z_0 z0 f ( z ) f(z) f(z)的可去奇点,矛盾,因此, z 0 z_0 z0 g ( z ) g(z) g(z)的本质极点。从而存在点列 { z n } \{z_n\} {zn} lim ⁡ n → ∞ z n = z 0 \displaystyle\lim_{n\to\infty}z_n=z_0 nlimzn=z0 lim ⁡ n → ∞ g ( z n ) = ∞ \displaystyle\lim_{n\to\infty}g(z_n)=\infty nlimg(zn)=,故 lim ⁡ n → ∞ f ( z n ) = a \displaystyle\lim_{n\to\infty}f(z_n)=a nlimf(zn)=a

例5.7 0是 f ( z ) = e 1 z f(z)=e^{\frac{1}{z}} f(z)=ez1的本质极点,因为 e 1 z = ∑ n = 0 ∞ 1 n ! z n e^{\frac{1}{z}}=\sum_{n=0}^\infty \frac{1}{n!z^n} ez1=n=0n!zn1 z n = 1 n , n = 1 , 2 , ⋯ z_n=\frac{1}{n},n=1,2,\cdots zn=n1,n=1,2, f ( z n ) = e n f(z_n)=e^n f(zn)=en lim ⁡ n → ∞ e n = ∞ \displaystyle\lim_{n\to\infty}e^n=\infty nlimen=,令 z n = − 1 n z_n=-\frac{1}{n} zn=n1 f ( z n ) = e − n f(z_n)=e^{-n} f(zn)=en lim ⁡ n → ∞ e − n = 0 \displaystyle\lim_{n\to\infty}e^{-n}=0 nlimen=0,对任何非零的有限复数 c c c,令 e 1 z = c e^{\frac{1}{z}}=c ez1=c那么 1 z = ln ⁡ ∣ c ∣ + i ( arg ⁡ c + 2 k π ) k = 0 , ± 1 , ± 2 , ⋯ \frac{1}{z}=\ln|c|+i(\arg c+2k\pi)\quad k=0,\pm 1,\pm 2,\cdots z1=lnc+i(argc+2kπ)k=0,±1,±2, z n = 1 ln ⁡ ∣ c ∣ + i ( arg ⁡ c + 2 n π ) z_n=\frac{1}{\ln|c|+i(\arg c+2n\pi)} zn=lnc+i(argc+2nπ)1 f ( z n ) = c f(z_n)=c f(zn)=c lim ⁡ n → ∞ f ( z n ) = c \displaystyle\lim_{n\to\infty}f(z_n)=c nlimf(zn)=c

由例5.7可以看出,除了0外,对任何有限复数 c c c 0 0 0的任意去心邻域都存在点 z ′ z^\prime z f ( z ′ ) = c f(z^\prime)=c f(z)=c,这不是偶然

皮卡大定理 z 0 z_0 z0 f ( z ) f(z) f(z)的本质极点,除去一个例外值 c ′ c^\prime c,对任意的 c ≠ c ′ c\neq c^\prime c=c,对任意的 δ > 0 \delta>0 δ>0,存在 0 < ∣ z ∣ < δ 0<|z|<\delta 0<z<δ f ( z ) = c f(z)=c f(z)=c

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值