最大类间方差法(大津法,OTSU)
最大类间方差法是由日本学者大津(Nobuyuki Otsu)于1979年提出的,是一种自适应的阈值确定的方法,又叫大津法,简称OTSU。它是按图像的灰度特性,将图像分成背景和目标2部分。背景和目标之间的类间方差越大,说明构成图像的2部分的差别越大,当部分目标错分为背景或部分背景错分为目标都会导致2部分差别变小。因此,使类间方差最大的分割意味着错分概率最小。对于图像I(x,y),前景(即目标)和背景的分割阈值记作
T
,属于前景的像素点数占整幅图像的比例记为
ω1
,其平均灰度
u1
;背景像素点数占整幅图像的比例为
ω2
,其平均灰度为
u2
。图像的总平均灰度记为
u
,类间方差记为
g
。
假设图像的背景较暗,并且图像的大小为
M×N
,图像中像素的灰度值小于阈值
T
的像素个数记作
N1
,像素灰度大于阈值
T
的像素个数记作
N2
,则有:
将式(1.5)代入式(1.6),得到等价公式:
采用遍历的方法得到使类间方差最大的阈值 T ,即为所求。
OpenCV代码:
int myOtsu(const IplImage *frame) //大津法求阈值
{
#define GrayScale 256 //frame灰度级
int width = frame->width;
int height = frame->height;
int pixelCount[GrayScale]={0};
float pixelPro[GrayScale]={0};
int i, j, pixelSum = width * height, threshold = 0;
uchar* data = (uchar*)frame->imageData;
//统计每个灰度级中像素的个数
for(i = 0; i < height; i++)
{
for(j = 0;j < width;j++)
{
pixelCount[(int)data[i * width + j]]++;
}
}
//计算每个灰度级的像素数目占整幅图像的比例
for(i = 0; i < GrayScale; i++)
{
pixelPro[i] = (float)pixelCount[i] / pixelSum;
}
//遍历灰度级[0,255],寻找合适的threshold
float w0, w1, u0tmp, u1tmp, u0, u1, deltaTmp, deltaMax = 0;
for(i = 0; i < GrayScale; i++)
{
w0 = w1 = u0tmp = u1tmp = u0 = u1 = deltaTmp = 0;
for(j = 0; j < GrayScale; j++)
{
if(j <= i) //背景部分
{
w0 += pixelPro[j];
u0tmp += j * pixelPro[j];
}
else //前景部分
{
w1 += pixelPro[j];
u1tmp += j * pixelPro[j];
}
}
u0 = u0tmp / w0;
u1 = u1tmp / w1;
deltaTmp = (float)(w0 *w1* pow((u0 - u1), 2)) ;
if(deltaTmp > deltaMax)
{
deltaMax = deltaTmp;
threshold = i;
}
}
return threshold;
}
参考文献:Nobuyuki Otsu发表的原文
“A Threshold Selection Method from Gray-Level Histograms,” Systems, Man and Cybernetics, IEEE Transactions on , vol.9, no.1, pp.62-66, Jan. 1979