幂率(伽马)变换

多数转自:[http://blog.csdn.net/lichengyu/article/details/8457425]
     http://blog.csdn.net/love_xunmeng/article/details/8274400
     (http://blog.csdn.net/lichengyu/article/details/8457425)
参考http://en.wikipedia.org/wiki/Gamma_correction
  http://www.cambridgeincolour.com/tutorials/gamma-correction.htm
参考书: 数字图像处理(第三版)第三章3.2.3 幂率(伽马)变换

一、什么是Gamma校正?

Gamma校正是对输入图像灰度值进行的非线性操作,使输出图像灰度值与输入图像灰度值呈指数关系:
                 s=crγ

这个指数 γ 即为Gamma.
经过Gamma校正后的输入和输出图像灰度值关系如图1所示:
这里写图片描述
                图1 Gamma校正.
  横坐标是输入灰度值,纵坐标是输出灰度值,蓝色曲线是gamma值小于1时的输入输出关系,红色曲线是gamma值大于1时的输入输出关系。可以观察到,当gamma值小于1时(蓝色曲线),图像的整体亮度值得到提升,同时低灰度处的对比度得到增加,更利于分辩低灰度值时的图像细节。

二、为什么进行Gamma校正?

  1. 人眼对外界光源的感光值与输入光强不是呈线性关系的,而是呈指数型关系的。在低照度下,人眼更容易分辨出亮度的变化,随着照度的增加,人眼不易分辨出亮度的变化。而摄像机感光与输入光强呈线性关系。如图2所示:
              这里写图片描述
             图2 人眼和摄像机的感光与实际输入光强的关系[1]。

为方便人眼辨识图像,需要将摄像机采集的图像进行gamma校正。

2.为能更有效的保存图像亮度信息,需进行Gamma校正。

未经gamma校正和经过gamma校正保存图像信息如图3所示:
  这里写图片描述

    图3 未经gamma校正和经过gamma校正保存图像信息.

  可以观察到,未经gamma校正的情况下,低灰度时,有较大范围的灰度值被保存成同一个值,造成信息丢失;同时高灰度值时,很多比较接近的灰度值却被保存成不同的值,造成空间浪费。经过gamma校正后,改善了存储的有效性和效率。
  

OpenCV代码实现

void MyGammaCorrection(Mat& src, Mat& dst, float fGamma)
{
    CV_Assert(src.data);

    // accept only char type matrices
    CV_Assert(src.depth() != sizeof(uchar));

    // build look up table
    unsigned char lut[256];
    for( int i = 0; i < 256; i++ )
    {
        lut[i] = saturate_cast<uchar>(pow((float)(i/255.0), fGamma) * 255.0f);
    }

    dst = src.clone();
    const int channels = dst.channels();
    switch(channels)
    {
        case 1:
            {

                MatIterator_<uchar> it, end;
                for( it = dst.begin<uchar>(), end = dst.end<uchar>(); it != end; it++ )
                    //*it = pow((float)(((*it))/255.0), fGamma) * 255.0;
                    *it = lut[(*it)];

                break;
            }
        case 3: 
            {

                MatIterator_<Vec3b> it, end;
                for( it = dst.begin<Vec3b>(), end = dst.end<Vec3b>(); it != end; it++ )
                {
                    //(*it)[0] = pow((float)(((*it)[0])/255.0), fGamma) * 255.0;
                    //(*it)[1] = pow((float)(((*it)[1])/255.0), fGamma) * 255.0;
                    //(*it)[2] = pow((float)(((*it)[2])/255.0), fGamma) * 255.0;
                    (*it)[0] = lut[((*it)[0])];
                    (*it)[1] = lut[((*it)[1])];
                    (*it)[2] = lut[((*it)[2])];
                }

                break;

            }
    }
}

Matlab代码实现

这里写图片描述
效果如下:

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值