Chroma + Ollama 搭建本地RAG应用

本篇文章我们将基于Ollama本地运行大语言模型(LLM),并结合ChormaDBLangchain来建立一个小型的基于网页内容进行本地问答的RAG应用。

概念介绍

先简单了解下这些术语:

LLM (A large language model) 是通过使用海量的文本数据集(书籍、网站等)训练出来的,具备通用语言理解和生成的能力。虽然它可以推理许多内容,但它们的知识仅限于特定时间点之前用于训练的数据。

LangChain 是一个用于开发由大型语言模型(LLM)驱动的应用程序的框架。提供了丰富的接口、组件、能力简化了构建LLM应用程序的过程。

Ollama 是一个免费的开源框架,可以让大模型很容易的运行在本地电脑上。

RAGRetrieval Augmented Generation)是一种利用额外数据增强 LLM 知识的技术,它通过从外部数据库获取当前或相关上下文信息,并在请求大型语言模型(LLM)生成响应时呈现给它,从而解决了生成不正确或误导性信息的问题。

工作流程图解如下:

基于上述RAG步骤,接下来我们将使用代码完成它。

开始搭建

1. 依据Ollama使用指南完成大模型的本地下载和的运行。

# LLM
ollama pull llama3
# Embedding Model
ollama pull nomic-embed-text

2. 安装langchainlangchain-communitybs4

pip install langchain langchain-community bs4

3. 初始化langchain提供的Ollama对象

from langchain_community.llms import Ollama
from langchain.callbacks.manager import CallbackManager
from langchain.callbacks.streaming_stdout import StreamingStdOutCallbackHandler
# 1. 初始化llm, 让其流式输出
llm = Ollama(model="llama3", 
             temperature=0.1, 
             top_p=0.4, 
             callback_manager=CallbackManager([StreamingStdOutCallbackHandler()])
             )

temperature控制文本生成的创造性,0时响应是可预测,始终选择下一个最可能的单词,这对于事实和准确性非常重要的答案是非常有用的。1时生成文本会选择更多的单词,会产生更具创意但不可能预测的答案。

top_p 或 核心采样 决定了生成时要考虑多少可能的单词。top_p值意味着模型会考虑更多可能的单词,甚至是可能性较低的单词,从而使生成的文本更加多样化。

较低的temperature和较高的top_p,可以产生具有创意的连贯文字。 由于temperature较低,答案通常具有逻辑性和连贯性,但由于top_p较高,答案仍然具有丰富的词汇和观点。比较适合生成信息类文本,内容清晰且能吸引读者。

较高的temperature和较低的top_p,可能会把单词以难以预测的方式组合在一起。 生成的文本创意高,会出现意想不到的结果,适合创作。

4. 获取RAG检索内容并分块

#`BeautifulSoup'解析网页内容:按照标签、类名、ID 等方式来定位和提取你需要的内容
import bs4 
#Load HTML pages using `urllib` and parse them with `BeautifulSoup'
from langchain_community.document_loaders import WebBaseLoader
#文本分割
from langchain_text_splitters import RecursiveCharacterTextSplitter

loader = WebBaseLoader(
    web_paths=("https://vuejs.org/guide/introduction.html#html",),
    bs_kwargs=dict(
        parse_only=bs4.SoupStrainer(
            class_=("content",),
            # id=("article-root",)
        )
    ),
)
docs = loader.load()
# chunk_overlap:分块的重叠部分
text_splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=200)
splits = text_splitter.split_documents(docs)

chunk_overlap:分块的重叠部分,重叠有助于降低将语句与与其相关的重要上下文分开的可能性。 chunk_size: 分块的大小,合理的分词设置会提高RAG的效果

  1. 内容基于本地的词嵌入模型 nomic-embed-text 嵌入向量数据库中
# 向量嵌入 ::: conda install onnxruntime -c conda-forge
from langchain_community.vectorstores import Chroma
# 有许多嵌入模型
from langchain_community.embeddings import OllamaEmbeddings
# 基于ollama运行嵌入模型 nomic-embed-text : A high-performing open embedding model with a large token context window.
vectorstore = Chroma.from_documents(documents=splits,
                                    embedding=OllamaEmbeddings(model="nomic-embed-text"))
# 相似搜索
# vectorstore.similarity_search("vue")                                    

此处的嵌入模型也可以使用其他的比如llama3mistral,但是在本地运行太慢了,它们和nomic-embed-text 一样不支持中文的词嵌入。如果想试试建立一个中文的文档库,可以试试 herald/dmeta-embedding-zh词嵌入的模型,支持中文。

ollama pull herald/dmeta-embedding-zh:latest

  1. 设置Prompt规范输出
from langchain_core.prompts import PromptTemplate
prompt = PromptTemplate(
    input_variables=['context', 'question'],
    template=
    """You are an assistant for question-answering tasks. Use the following pieces of retrieved context to answer the 
    question. you don't know the answer, just say you don't know 
    without any explanation Question: {question} Context: {context} Answer:""",
)

  1. 基于langchain实现检索问答
from langchain.chains import RetrievalQA
# 向量数据库检索器
retriever = vectorstore.as_retriever()

qa_chain = RetrievalQA.from_chain_type(
    llm,
    retriever=retriever,
    chain_type_kwargs={"prompt": prompt}
)
# what is Composition API?
question = "what is vue?"
result = qa_chain.invoke({"query": question})

# output
# I think I know this one! Based on the context, 
# Vue is a JavaScript framework for building user interfaces 
# that builds on top of standard HTML, CSS, and JavaScript. 
# It provides a declarative way to use Vue primarily in 
# low-complexity scenarios or for building full applications with 
# Composition API + Single-File Components.

如果我问的问题与文档无关它的回答是怎样呢?

question = "what is react?"
result = qa_chain.invoke({"query": question})

最终执行后输出了I don't know.

构建用户界面

Gradio是一个用于构建交互式机器学习界面的Python库。Gradio使用非常简单。你只需要定义一个有输入和输出的函数,然后Gradio将自动为你生成一个界面。用户可以在界面中输入数据,然后观察模型的输出结果。

整合上述代码,构建可交互的UI:

import gradio as gr
from langchain_community.llms import Ollama
from langchain.callbacks.manager import CallbackManager
from langchain.callbacks.streaming_stdout import StreamingStdOutCallbackHandler
from langchain_community.document_loaders import WebBaseLoader
from langchain_text_splitters import RecursiveCharacterTextSplitter
from langchain_community.vectorstores import Chroma
from langchain_community.embeddings import OllamaEmbeddings
from langchain.chains import RetrievalQA
from langchain_core.prompts import PromptTemplate

def init_ollama_llm(model, temperature, top_p):
    return Ollama(model=model,
                  temperature=temperature,
                  top_p=top_p,
                  callback_manager=CallbackManager([StreamingStdOutCallbackHandler()])
                  )

def content_web(url):
    loader = WebBaseLoader(
        web_paths=(url,),
    )
    docs = loader.load()
    # chunk_overlap:分块的重叠部分,重叠有助于降低将语句与与其相关的重要上下文分开的可能性,
    # 设置了chunk_overlap效果会更好
    # 合理的分词会提高RAG的效果
    text_splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=200)
    splits = text_splitter.split_documents(docs)
    return splits

def chroma_retriever_store_content(splits):
    # 基于ollama运行嵌入模型 nomic-embed-text : A high-performing open embedding model with a large token context window.
    vectorstore = Chroma.from_documents(documents=splits,
                                        embedding=OllamaEmbeddings(model="nomic-embed-text"))
    return vectorstore.as_retriever()

def rag_prompt():
    return PromptTemplate(
        input_variables=['context', 'question'],
        template=
        """You are an assistant for question-answering tasks. Use the following pieces of retrieved context to answer the 
        question. you don't know the answer, just say you don't know 
        without any explanation Question: {question} Context: {context} Answer:""",
    )

def ollama_rag_chroma_web_content(web_url, question,temperature,top_p):
    llm = init_ollama_llm('llama3', temperature, top_p)
    splits = content_web(web_url)
    retriever = chroma_retriever_store_content(splits)
    qa_chain = RetrievalQA.from_chain_type(llm, retriever=retriever, chain_type_kwargs={"prompt": rag_prompt()})
    return qa_chain.invoke({"query": question})["result"]

demo = gr.Interface(
    fn=ollama_rag_chroma_web_content,
    inputs=[gr.Textbox(label="web_url",value="https://vuejs.org/guide/introduction.html",info="爬取内容的网页地址"),
            "text",
            gr.Slider(0, 1,step=0.1),
            gr.Slider(0, 1,step=0.1)],
    outputs="text",
    title="Ollama+RAG Example",
    description="输入网页的URL,然后提问, 获取答案"
)

demo.launch()

运行后会输出网页地址Running on local URL: http://127.0.0.1:7860, 打开后效果如下: image.png

参考

github.com/ollama/olla…

python.langchain.com/

partee.io/2022/08/11/…

jalammar.github.io/illustrated…

如何学习AI大模型?

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

自己也整理很多AI大模型资料:AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

在这里插入图片描述

第一阶段: 从大模型系统设计入手,讲解大模型的主要方法;

第二阶段: 在通过大模型提示词工程从Prompts角度入手更好发挥模型的作用;

第三阶段: 大模型平台应用开发借助阿里云PAI平台构建电商领域虚拟试衣系统;

第四阶段: 大模型知识库应用开发以LangChain框架为例,构建物流行业咨询智能问答系统;

第五阶段: 大模型微调开发借助以大健康、新零售、新媒体领域构建适合当前领域大模型;

第六阶段: 以SD多模态大模型为主,搭建了文生图小程序案例;

第七阶段: 以大模型平台应用与开发为主,通过星火大模型,文心大模型等成熟大模型构建大模型行业应用。

在这里插入图片描述

👉学会后的收获:👈
• 基于大模型全栈工程实现(前端、后端、产品经理、设计、数据分析等),通过这门课可获得不同能力;

• 能够利用大模型解决相关实际项目需求: 大数据时代,越来越多的企业和机构需要处理海量数据,利用大模型技术可以更好地处理这些数据,提高数据分析和决策的准确性。因此,掌握大模型应用开发技能,可以让程序员更好地应对实际项目需求;

• 基于大模型和企业数据AI应用开发,实现大模型理论、掌握GPU算力、硬件、LangChain开发框架和项目实战技能, 学会Fine-tuning垂直训练大模型(数据准备、数据蒸馏、大模型部署)一站式掌握;

• 能够完成时下热门大模型垂直领域模型训练能力,提高程序员的编码能力: 大模型应用开发需要掌握机器学习算法、深度学习框架等技术,这些技术的掌握可以提高程序员的编码能力和分析能力,让程序员更加熟练地编写高质量的代码。

在这里插入图片描述

1.AI大模型学习路线图
2.100套AI大模型商业化落地方案
3.100集大模型视频教程
4.200本大模型PDF书籍
5.LLM面试题合集
6.AI产品经理资源合集

👉获取方式:
😝有需要的小伙伴,可以保存图片到wx扫描二v码免费领取【保证100%免费】🆓

  • 3
    点赞
  • 4
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值