2020-11-25

1 Introduction

考虑下列问题:
在这里插入图片描述
其中 x ∈ R n x\in\R^n xRn是决策变量, X ⊆ R n X\subseteq\R^n XRn是一个能够写成半正定约束的闭凸集, c ∈ R n c\in\R^n cRn是成本向量,假设是确定的。(1)中的机会约束要求以至少 1 − ϵ 1-\epsilon 1ϵ的概率共同满足一组 m m m个受不确定性影响的不等式,其中 ϵ ∈ ( 0 , 1 ) \epsilon\in(0,1) ϵ(0,1)是建模者指定的期望安全系数。不确定性约束系数 a i ( ξ ) ∼ ∈ R n a_i\overset\sim{(\xi)}\in\R^n ai(ξ)Rn b i ( ξ ) ∼ ∈ R n b_i\overset\sim{(\xi)}\in\R^n bi(ξ)Rn i ∈ R , i = 1 , . . . , m i\in\R,i=1,...,m iR,i=1,...,m依赖于随机变量 ξ ∼ ∈ R k \overset\sim{\xi}\in\R^k ξRk, Q Q Q的分布是假定已知的。
那么得到:
在这里插入图片描述
为了便于标记,引入辅助函数 y i j : R n → R y_i^j:\R^n\rightarrow\R yij:RnR
在这里插入图片描述
于是将问题(1)中的机会约束重写为:
在这里插入图片描述
尽管许多学者都对上述问题进行了研究,但是仍未在实践中得到广泛的应用。主要原因有:
(1)即使检查固定决策 x x x的可行性也需要计算多维积分,这随着随机矢量 ξ ∼ \overset\sim{\xi} ξ的维数 k k k的增大而变得越来越困难。
(2)即使机会约束(2)中的不等式在 x x x ξ ∼ \overset\sim{\xi} ξ中都是双仿射的,问题(1)的可行集通常也不是凸的,有时甚至是不连续的。
(3)为了评估机会约束(2),需要关于随机向量 ξ ∼ \overset\sim{\xi} ξ的概率分布 Q Q Q的完整且准确的信息。但是,在许多实际情况下,必须根据历史数据估算 Q Q Q,因此它本身是不确定的。

在某些特殊情况下,机会约束可以重新表述为易处理的凸约束。例如,已知的是,如果随机矢量 ξ ∼ \overset\sim{\xi} ξ遵循高斯分布且 ϵ ≤ 0.5 \epsilon\le0.5 ϵ0.5,则可以将个体机会约束等效地表示为单个二阶锥约束。在这种情况下,机会约束问题变成了可处理的二阶锥程序(SOCP),可以在多项式时间内求解.

使机会约束(2)免受概率分布不确定性影响的自然方法是采用分布鲁棒的方法。 为此,令 P P P表示 R k \R^k Rk上与 Q Q Q的已知属性(例如其第一和第二矩或其支撑集)一致的所有概率分布的集合。 现在考虑以下模糊或分布鲁棒的机会约束。
在这里插入图片描述
将机会约束(2)替换为其对应的分布鲁棒机会约束(3),得到如下分布鲁棒机会约束规划:
在这里插入图片描述
从上述问题与问题(1)具有相同的目标函数但较小的可行集的意义上讲,它构成了问题(1)的保守近似。

2 Distributionally robust individual chance constraints

首先说明如何用矩问题的理论将这些最坏情况的CVaR约束表示成可处理的半定约束

μ ∈ R k \mu\in\R^k μRk Σ ∈ S k \Sigma\in S^k ΣSk为随机变量 ξ ∼ \overset\sim\xi ξ在真实分布 Q Q Q下的均值和协方差矩阵,且 Σ > 0 \Sigma>0 Σ>0;令 P P P表示 R k \R^k Rk上所有与 Q Q Q的一阶矩和二阶矩相同的概率分布的集合。为了简化表示,令:
在这里插入图片描述
ξ ∼ \overset\sim\xi ξ的二阶矩矩阵。

2.1 The Worst-Case CVaR approximation(最坏情况的CVaR近似)

当m = 1时,(3)简化为分布鲁棒的个体机会约束:
在这里插入图片描述
(5)的可行集表示为:
在这里插入图片描述
下面将证明 X I C C X^{ICC} XICC具有线性矩阵不等式的明显易处理的表达形式。
首先回顾一下Rockafellar和Uryasev对CVaR的定义:
对于给定可测的损失函数 L : R k → R L:\R^k\rightarrow\R L:RkR,在 R k \R^k Rk上的概率分布 P P P,以及容差 ϵ ∈ ( 0 , 1 ) \epsilon\in (0,1) ϵ(0,1),相对于 P P P的水平 ϵ \epsilon ϵ的CVaR定义为:
在这里插入图片描述
CVaR本质上是评估损失分布的 ( 1 − ϵ ) (1-\epsilon) (1ϵ)分位数以上的条件损失期望。 可以看出,CVaR表示
随机变量 L ( ξ ∼ ) L(\overset\sim\xi) L(ξ)的凸函数。
所以:
在这里插入图片描述
对任何可测的损失函数 L L L都是满足的,因此 P − C V a R ϵ ( L ( ξ ∼ ) ≤ 0 P-CVaR_{\epsilon}(L(\overset\sim\xi)\le0 PCVaRϵ(L(ξ)0足以说明 P ( L ( ξ ∼ ) ≤ 0 ) ≥ 1 − ϵ P(L(\overset\sim\xi)\le0)\ge1-\epsilon P(L(ξ)0)1ϵ,由于这一含义适用于任何概率分布和损失函数,于是得出结论:
在这里插入图片描述
因此,左边的最坏情况CVaR约束构成了(7)右边的分布鲁棒机会约束的保守逼近。以上的讨论促使我们定义可行集:
在这里插入图片描述
在这里插入图片描述
可行集 Z I C C Z^{ICC} ZICC构成 X I C C X^{ICC} XICC的保守近似值,即 Z I C C ⊆ X I C C Z^{ICC}\subseteq X^{ICC} ZICCXICC
下面将说明 Z I C C Z^{ICC} ZICC有一个用线性矩阵不等式(LMIs)表示的可处理的形式。
在这里插入图片描述
T h e o r e m 2.1 Theorem 2.1 Theorem2.1的证明如下:
在这里插入图片描述
现在表明,可以通过求解可处理的SDP来计算某些固定决策 x ∈ R n x\in\R^n xRn的最坏情况CVaR(9)。 为此,首先得求出最坏情况期望问题的SDP格式:
在这里插入图片描述
附录中的引理A.1将该最坏情况的期望问题重新表述为:
在这里插入图片描述
具体过程为:
在这里插入图片描述
所以得到对偶问题为:
在这里插入图片描述
定义组合变量:
在这里插入图片描述
(53)中的半无限约束可以用两个等价的半无限约束表示:
在这里插入图片描述
最后就得到了问题(10)
在这里插入图片描述
问题(10)中的半无限约束可以写成如下的线性矩阵不等式的形式:*** ξ \xi ξ被消除了***
在这里插入图片描述
重新构造最坏情况期望问题为:
在这里插入图片描述
将上述(11)带入(9)中得到:
在这里插入图片描述
现在 T h e o r e m 21 Theorem 21 Theorem21证明完毕!

2.2 Exactness of the Worst-Case CVaR approximation(最坏情况CVaR近似的准确性)

到目前为止,已经证明了根据最坏情况CVaR约束定义的可行集 Z I C C Z^{ICC} ZICC构成了 X I C C X^{ICC} XICC的一个可处理的保守逼近。接下来证明这个近似实际上是精确的,也就是说,证明(7)实际上是等价的。
首先回顾了Farkas引理和S引理,它们是证明这一结果的关键因素。
在这里插入图片描述
在这里插入图片描述

证明:

考虑损失函数 L L L的最坏情况风险值,定义为:
在这里插入图片描述
根据定义, W C − V a R WC-VaR WCVaR实际上等于在 P P P中某些最坏情况下评估的 L ( ξ ∼ ) L(\overset\sim\xi) L(ξ) 1 − ϵ 1-\epsilon 1ϵ分位数。首先证明以下等价成立:
在这里插入图片描述
(1)左边推右边
如果满足(15)的左边,则在(14)中 γ = 0 \gamma=0 γ=0是可行的,这意味着 W C − V a R ϵ ( L ( ξ ∼ ) ) ≤ 0 WC-VaR_{\epsilon}(L(\overset\sim\xi))\le0 WCVaRϵ(L(ξ))0。 我们注意到,对于任何固定的 P ∈ P \Bbb P∈P PP,映射 γ ↦ P ( L ( ξ ∼ ) ≤ γ ) \gamma\mapsto\Bbb P(L(\overset\sim\xi)\le\gamma) γP(L(ξ)γ)是上半连续的(这个结论是来自参考文献【21】)。 因此,相关映射 γ ↦ i n f P ∈ P P ( L ( ξ ∼ ) ≤ γ ) \gamma\mapsto inf_{\Bbb P\in P}\Bbb P(L(\overset\sim\xi)\le\gamma) γinfPPP(L(ξ)γ)也是上半连续的。
(2)右边推左边
如果 W C − V a R ϵ ( L ( ξ ∼ ) ) ≤ 0 WC-VaR_{\epsilon}(L(\overset\sim\xi))\le0 WCVaRϵ(L(ξ))0,则存在一个序列 { γ n } n ∈ N \{\gamma_n\}_{n\in \Bbb N} {γn}nN收敛为零,在(14)中是可行的,这意味着
在这里插入图片描述
所以式(15)满足的。

下面就是证明式(13)的等价性,也就证明了 T h e o r e m 2.2 Theorem2.2 Theorem2.2
证明(13)只需要证明:
在这里插入图片描述
注意(14):
在这里插入图片描述
可以重写为:
在这里插入图片描述
通过简化从属最坏情况概率问题 s u p P ∈ P P ( L ( ξ ∼ ) > γ ) sup_{\Bbb P\in P}\Bbb P(L(\overset\sim\xi)>\gamma) supPPP(L(ξ)>γ),根据附录中的引理A.2可以表示为:
在这里插入图片描述
具体过程为:
在这里插入图片描述
在这里插入图片描述
下面说明除了 γ \gamma γ的一个值以外,问题(17)等于问题(18)具体的证明过程我也没看太明白,详见原文P10
在这里插入图片描述
由于上述(17)、(18)等价,所以(16)可以重写为:
在这里插入图片描述
由上述约束可以看出,若问题(19)的 τ − \tau- τ分量消失,那么对于(19)的任意可行解有 ⟨ Ω , M ⟩ ≥ 1 \langle\Omega,M\rangle\ge1 Ω,M1,(***是因为 τ − \tau- τ分量消失后M>1所以 ⟨ Ω , M ⟩ ≥ 1 \langle\Omega,M\rangle\ge1 Ω,M1吗???***)又因为 ϵ < 1 \epsilon<1 ϵ<1,所以与 ⟨ Ω , M ⟩   < ϵ \langle\Omega,M\rangle\ < \epsilon Ω,M <ϵ相冲突,没有可行的点可以具有消失的 τ − \tau- τ分量。
将问题(19)中的半无限约束除以 τ − \tau- τ,然后进行变量替换,其中将 τ \tau τ替换为 1 / τ 1/\tau 1/τ,将 M M M替换为 M / τ M /\tau M/τ得到:
在这里插入图片描述
现在引入一个新的决策变量 β = γ − τ \beta=\gamma-\tau β=γτ,可以消除 γ \gamma γ得到:
在这里插入图片描述
由上述式子可以看出 τ \tau τ的最优值为 τ = ⟨ Ω , M ⟩ / ϵ \tau=\langle\Omega,M\rangle/\epsilon τ=Ω,M/ϵ,最终 W C − V a R ϵ ( L ( ξ ∼ ) ) WC-VaR_{\epsilon}(L(\overset\sim\xi)) WCVaRϵ(L(ξ))的形式为:
在这里插入图片描述
这与
在这里插入图片描述
相同,所以
在这里插入图片描述
利用上述结果得到以下推论:
在这里插入图片描述

2.3 Tractability of the Worst-Case CVaR approximation(最坏情况CVaR近似的可处理性)

已经看到,最差情况下的CVaR约束等效于损失函数连续且关于 ξ \xi ξ为凹或二次的分布鲁棒机会约束。现在证明,对于这些损失函数类别,最坏情况的CVaR也可以有效地计算出来具体证明过程没有细看,详见原文P12
在这里插入图片描述

3 Distributionally robust joint chance constraints(分布鲁棒的联合机会约束)

定义分布鲁棒联合机会约束(3)的可行集 X J C C X^{JCC} XJCC为:
在这里插入图片描述
首先回顾两种现有的近似并讨论它们的优点和缺点:

3.1 The Bonferroni approximation

鲁棒联合机会约束(3)等价于
在这里插入图片描述
此外,Bonferroni不等式表明:
在这里插入图片描述
对于任意的 ϵ ∈ E = { ϵ ∈ R + m : Σ i = 1 m ϵ i ≤ ϵ } \epsilon\in E=\{\epsilon\in \Bbb R_+^m:\Sigma_{i=1}^m\epsilon_i\le\epsilon\} ϵE={ϵR+m:Σi=1mϵiϵ},分布鲁棒的个体机会约束为:
在这里插入图片描述
通过 T h e o r e m 2.1 Theorem2.1 Theorem2.1可以将每个个体约束都写成线性矩阵不等式(LMIS)的形式:
在这里插入图片描述
Bonferroni近似的一个主要缺点是近似质量严重依赖于 ϵ ∈ E \epsilon\in E ϵE的选择。但为问题(4)的泛型机会约束问题寻找最佳 ϵ ∈ E \epsilon\in E ϵE的问题是非凸的,是非常困难的。因此,在大多数Bonferroni不等式的应用中,通常设置 ϵ i = ϵ / m \epsilon_i=\epsilon/m ϵi=ϵ/m i = 1 , . . . , m i=1,...,m i=1,...,m。即使 ϵ ∈ E \epsilon\in E ϵE是最优选择,Bonferroni近似也可能过于保守。

3.2 Approximation by Chen, Sim, Sun and Teo

为了减轻Bonferroni近似可能的过度保守性Chen等人提出了一种基于与概率论不同的不等式的近似。观察到联合机会约束(3)可以重新表示为:
在这里插入图片描述
由前面得到的 T h e r o e m 2.2 Theroem2.2 Theroem2.2:
在这里插入图片描述
得到:
在这里插入图片描述

3.3 The Worst-Case CVaR approximation

到目前为止讨论的两种近似都依赖于概率理论中的不等式,这些不等式不一定严格。 在本节中将证明 Z J C C ( α ) Z^{JCC}(\alpha) ZJCC(α)集实际上具有线性矩阵不等式的精确易处理的表示形式,因此有望为 Z J C C Z^{JCC} ZJCC提供紧密的凸近似。
在这里插入图片描述
具体证明过程如下:
Z J C C ( α ) Z^{JCC}(\alpha) ZJCC(α)的形式为:
在这里插入图片描述
我们注意到约束 Z J C C ( α ) Z^{JCC}(\alpha) ZJCC(α)等价于 J ( x , α ) ≤ 0 J(x,\alpha)\le0 J(x,α)0,其中
在这里插入图片描述
要处理上述(31)问题,首先处理:
在这里插入图片描述
通过拉格朗日对偶等一系列转化最中得到:
在这里插入图片描述
最终 T h e r o e m 3.3 Theroem3.3 Theroem3.3得以证明

3.4 Dual interpretation of the Worst-Case CVaR approximation

在本节中,探索了一种不同的方法来找到机会约束(3)的易于处理的保守近似。
再次考虑鲁棒的个人机会约束(28),它等效于任何固定 α ∈ A \alpha\in A αA的鲁棒的联合机会约束(3)。可以用以下 q ( ξ ) = ξ T Q ξ + ξ T q + q 0 q(\xi)=\xi^TQ\xi+\xi^Tq+q^0 q(ξ)=ξTQξ+ξTq+q0满足的公式近似最大函数,而不是用最差情况CVaR来逼近约束(28)
在这里插入图片描述
q ( ξ ) q(\xi) q(ξ)代替(28)中的最大函数会产生分布鲁棒的(单个)二次机会约束:
在这里插入图片描述
为了进一步论证,定义:
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
通过 T h e o r e m 2.2 Theorem2.2 Theorem2.2 T h e o r e m 2.3 Theorem2.3 Theorem2.3可以证明,证明过程详见原文P20。
在这里插入图片描述
具体的证明过程如下:
在这里插入图片描述

3.5 Exactness of the Worst-Case CVaR approximation

到目前为止,已经证明,对于任何固定的 α ∈ A \alpha\in A αA,可行集 Z J C C ( α ) Z^{JCC}(\alpha) ZJCC(α)构成 X J C C X^{JCC} XJCC的可处理的保守近似。 这意味着联合 Z J C C = ⋃ α ∈ S Z J C C ( α ) Z^{JCC} =\bigcup_{\alpha\in S}Z^{JCC}(\alpha) ZJCC=αSZJCC(α)仍然构成 X J C C X^{JCC} XJCC的保守近似,现在证明这种改进的近似本质上是精确的,首先介绍可行集在这里插入图片描述
对应一个严格版本的联合机会约束(***这是一个更严格的版本吗?不应该是 i n f inf inf更严格吗???***
在这里插入图片描述
具体证明过程详见原文P22

3.6 Injecting support information

在许多实际应用中,已知 ξ ∼ \overset\sim\xi ξ的(真实)分布 Q \Bbb Q Q R k \R^k Rk的严格子集。在 P P P的定义中忽略此信息可能会导致不必要的保守鲁棒机会约束。 在本节中,简要概述了如何使用支持信息来加强鲁棒的联合机会约束及其在第3小节中开发的近似值。为此,首先修改分布假设:
随机变量 ξ ∼ \overset\sim\xi ξ的分布为 Q \Bbb Q Q,其均值为 μ \mu μ,方差为 Σ > 0 \Sigma>0 Σ>0,假设 Q \Bbb Q Q的支撑集为: E = { ξ ∈ R k : [ ξ T 1 ] W i [ ξ T 1 ] T ≤ 0 对 于 i = 1 , . . . , l } E=\{\xi\in \Bbb R^k:[\xi^T1]W_i[\xi^T1]^T\le0对于i=1,...,l\} E={ξRk:[ξT1]Wi[ξT1]T0i=1,...,l}。其中 W i ∈ S k + 1 对 于 i = 1 , . . . , l W_i\in \Bbb S^{k+1}对于i=1,...,l WiSk+1i=1,...,l,定义 P E P_E PE为在 E E E上与 Q \Bbb Q Q有相同一阶矩和二阶矩的分布的集合。
在本节中,感兴趣的是下列可行集的可处理保守近似:
在这里插入图片描述
在前面的内容中已经研究了可行集:
在这里插入图片描述
通过使用与第2.1节类似的论点,可以证明对于所有 α ∈ A \alpha\in A αA Z E J C C ( α ) ⊆ X E J C C ( α ) Z^{JCC}_E(\alpha)\subseteq X^{JCC}_E(\alpha) ZEJCC(α)XEJCC(α),但是,就集合 Z E J C C ( α ) Z^{JCC}_E(\alpha) ZEJCC(α)不再具有精确的线性矩阵不等式的表示形式。 相反,它们需要保守地近似。
因此得到下面的 T h e o r e m 3.7 Theorem3.7 Theorem3.7:
在这里插入图片描述

  • 1
    点赞
  • 10
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值