常见的凸优化问题包括:线性规划(LP,Linear Program),二次规划(QP,Quadratic Program),二次约束的二次规划(QCCP,Quadratically Contrained Quadratic Program),半正定规划(SDP,Semidefinite Program)
凸优化
凸优化问题(OPT,convex optimization problem)指定义在凸集中的凸函数最优化的问题。一般形式为:
其中 f 是一个凸函数,C是一个凸集,x是优化变量。
即要求目标函数是凸函数,变量所属集合是凸集合的优化问题。或者目标函数是凸函数,变量的约束函数是凸函数(不等式约束时),或者是仿射函数(等式约束时)。
虽然凸优化的条件比较苛刻,但仍然在机器学习参数最优化领域有广泛的应用。凸优化问题的优势体现在:
1、凸优化问题的局部最优解就是全局最优解
2、很多非凸问题都可以被等价转化为凸优化问题或者被近似为凸优化问题
3、凸优化问题的研究较为成熟,当一个具体被归为一个凸优化问题,基本可以确定