凸优化与半定规划(SDP)

常见的凸优化问题包括:线性规划(LP,Linear Program),二次规划(QP,Quadratic Program),二次约束的二次规划(QCCP,Quadratically Contrained Quadratic Program),半正定规划(SDP,Semidefinite Program)

凸优化

凸优化问题(OPT,convex optimization problem)指定义在凸集中的凸函数最优化的问题。一般形式为:
在这里插入图片描述
其中 f 是一个凸函数,C是一个凸集,x是优化变量。
凸集的几何意义 即要求目标函数是凸函数,变量所属集合是凸集合的优化问题。或者目标函数是凸函数,变量的约束函数是凸函数(不等式约束时),或者是仿射函数(等式约束时)。

虽然凸优化的条件比较苛刻,但仍然在机器学习参数最优化领域有广泛的应用。凸优化问题的优势体现在:
1、凸优化问题的局部最优解就是全局最优解
2、很多非凸问题都可以被等价转化为凸优化问题或者被近似为凸优化问题
3、凸优化问题的研究较为成熟,当一个具体被归为一个凸优化问题,基本可以确定

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值