傅里叶变换(Fourier Transform, FT)是信号处理中的一个“基本功”,它的作用是:
把一个信号从“时间域”转换到“频率域”,揭示信号中隐藏的频率成分。
📌 一、傅里叶变换在干什么?
我们平时看到的信号,比如声音、电压、震动信号,都是随时间变化的波形,这叫“时间域”表示。但很多时候,我们更关心的是:
- 它里面都包含了哪些频率?
- 哪些频率成分强、哪些弱?
- 是否包含高频干扰或低频趋势?
傅里叶变换就能帮我们把信号“拆解”成一堆不同频率的正弦波(像拼乐高那样),告诉我们:
“这个信号是由哪些频率的振动组成的”。
🧠 数学上是怎么做的?
傅里叶变换把一个信号 ( x(t) ) 变成一个复数函数 ( X(f) ),表示每个频率 ( f ) 的强度和相位:
X ( f ) = ∫ − ∞ + ∞ x ( t ) e − j 2 π f t d t X(f) = \int_{-\infty}^{+\infty} x(t) e^{-j2\pi ft} dt X(f)=∫−∞+∞x(t)e−j2πftdt
它的反变换可以把频率信息再还原回时间域。
👨🏫 通俗理解(很形象):
想象你在听一段声音,你知道它是由多个乐器混合而成,但你想知道:
- 有没有鼓声?频率大约是低的;
- 有没有小提琴?频率中等;
- 有没有尖锐的口哨声?频率很高。
傅里叶变换就像一台频率“解码仪”,它会告诉你:
“这个声音中含有100Hz(鼓)、800Hz(小提琴)、3000Hz(口哨),每个成分强度是多少。”
也可以类比成:
- 时间域信号就像一道混合颜色的光;
- 傅里叶变换就像一面三棱镜,把它分解成红橙黄绿蓝靛紫(频率分量)!
🎯 应用举例:
- 音频处理:提取乐器声音、降噪;
- 机械监测:振动信号频谱分析 → 判断是否有轴承故障;
- 图像处理:图像模糊、锐化处理;
- 通信系统:信号调制、解调都离不开傅里叶变换。