短时傅里叶变换(Short-Time Fourier Transform,简称 STFT)究竟在干什么?

短时傅里叶变换(Short-Time Fourier Transform,简称 STFT)是一种分析非平稳信号频谱随时间变化的方法,是对传统傅里叶变换的一种改进。


📌 一、传统傅里叶变换有什么局限?

普通的傅里叶变换(FT)可以把一个信号变成频谱,但它假设信号是稳定不变的(即平稳的),适用于整段时间的整体频率分析。

但现实中很多信号(比如语音、机械振动、风电机组故障信号等)是时变的 —— 某个时刻频率成分可能突变,傅里叶变换无法定位什么时候发生了什么频率变化


🔍 二、STFT 是怎么改进的?

STFT 的核心思想是:

“给信号加个窗,把长信号分成一段一段(短时),每一段再做傅里叶变换。”

步骤如下:

  1. 给信号加一个滑动窗口函数(如汉明窗、矩形窗等),提取当前时间段的局部信号;
  2. 对这一小段做傅里叶变换,获得当前这段的频谱;
  3. 移动窗口,重复以上过程;
  4. 最终得到一个时间-频率二维图:横轴是时间,纵轴是频率,颜色代表强度(功率或振幅)—— 这就是常说的频谱图(spectrogram)

👨‍🏫 通俗解释:

想象你在听一首音乐,里面有吉他、鼓、钢琴。

  • 傅里叶变换就像你听完整首曲子后告诉别人:“这首歌里有哪些乐器”
  • STFT 就像你每隔1秒暂停听一下,分析当前这1秒的声音,然后再继续下一秒——你就可以知道:“第3秒开始有鼓声,第10秒钢琴变响了”

🖼️ 举个实际例子(比如风电机组):

你用 STFT 分析发电机电流信号:

  • 第10秒开始频率升高,可能是负载波动;
  • 第25秒出现高频噪声,可能是轴承故障;
  • 你就能定位到异常 “发生在哪一刻”,这是普通傅里叶变换做不到的。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值