什么是“偏态”与“厚尾”?

✅ 一、什么是“偏态”与“厚尾”?(供你用于解释)

📌 偏态分布(Skewed Distribution):

  • 定义:数据分布在均值的一侧拉长或压缩,呈现不对称结构
  • 正偏(右偏):右侧尾巴较长,如收入、寿命分布;
  • 负偏(左偏):左侧尾巴较长。

📌 厚尾分布(Heavy-tailed Distribution):

  • 定义:相对于正态分布,厚尾分布的尾部衰减速度更慢,意味着极端值出现的概率更大
  • 常见的厚尾分布:t 分布、柯西分布、幂律分布等。

✅ 二、IQR方法在这类分布下的问题:

  • 四分位数法是基于中位数和四分位距的非参数方法,适用于对称或近似正态的数据。
  • 当数据存在明显偏态或厚尾时,固定1.5倍IQR的阈值不再合理,可能:
    • 误判正常值为异常(即“误报”);
    • 漏检真正的异常(即“漏报”);

✅ 三、清晰对比以下三种情况:

📊 :

曲线特征标注内容
① 正态分布对称分布,IQR阈值适用标出 Q1, Q3, IQR,固定倍数
② 偏态分布偏右或偏左,尾部拉长固定1.5×IQR 会误判尾部
③ 厚尾分布两侧尾部肥大固定阈值误判更严重

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值