创业-招投标

1. 小微企业如何拿下招投标项目

  1. 竞争性谈判的项目:最低价中标,没利润,可以快速带来业务,积累业绩
  2. 政采项目:带来业绩,比较公平
  3. 控标:高级玩法

2. 86家央企+全国及31省自治区采购平台盘点

参考:86家央企+全国及31省自治区采购平台盘点

序号 企业名称 采购平台网址
1 中国核工业集团有限公司 中核集团电子采购平台
2 中国航天科技集团有限公司 航天电子采购平台
3 中国航空工业集团有限公司 航空工业电子采购平台
4 中国船舶集团有限公司 中国船舶采购管理电子商务平台
5 中国兵器工业集团有限公司 兵器工业集团公司采购电子商务平台
6 中国兵器装备集团有限公司 中国兵器装备集团招标投标交易平台
7 中国电子科技集团有限公司 中国电子科技集团有限公司电子采购平台
8 中国航空发动机集团有限公司 中国航发网上商城
9 中国融通资产管理集团有限公司 中国融通电子商务平台
10 中国石油天然气集团有限公司 中国石油招标投标网
11 中国石油化工集团有限公司 中国石化物资采购电子商务平台
12 中国海洋石油集团有限公司 中国海洋石油集团采办业务管理与交易系统
13 国家电网有限公司 国网电子商务平台
14 中国南方电网有限责任公司 中国南方电网供应链统一服务平台
15 中国华能集团有限公司 中国华能集团有限公司电子商务平台
16 中国大唐集团有限公司
内容概要:本文介绍了一种利用遗传算法优化BP神经网络进行回归预测的方法,并提供了完整的MATLAB程序代码。主要内容包括数据预处理、遗传算法与BP神经网络的结合、适应度函数的设计以及最终的预测结果展示。文中详细解释了如何将Excel格式的数据导入MATLAB并进行归一化处理,如何定义适应度函数来优化BP神经网络的参数(如激活函数和学习率),并通过遗传算法找到最优解。实验结果显示,在某工业数据集上,经过遗传算法优化后的BP神经网络预测精度显著提高,从原来的0.82提升到了0.91。此外,还提到了一些实用技巧,比如调整遗传代数、修改激活函数等方法进一步改进模型性能。 适合人群:对机器学习有一定了解的研究人员和技术爱好者,特别是那些希望深入了解遗传算法与BP神经网络结合应用的人士。 使用场景及目标:适用于需要快速构建高效回归预测模型的场景,尤其是当传统BP神经网络无法达到预期效果时。通过本篇文章的学习,读者能够掌握一种有效的优化手段,从而提高模型的泛化能力和预测准确性。 其他说明:代码可以直接应用于新的数据集,只需确保数据格式符合要求(Excel格式)。对于想要深入探索或改进现有模型的人来说,还可以尝试更换不同的激活函数或其他调节方式来获得更好的表现。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

GeekPlusA

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值