大家好,我是讲AI的莫大猫。
今天我们学习如何用yolo v11进行猫狗检测。
新人学习会踩的坑:很多人入门yolo算法,一开始跟着某些教程或者官网去弄coco数据集或者VOC数据集,但是下载下来后,花了很多时间都弄不明白这个数据集是如何进行转换的,又是如何写代码进行划分的,代码又是怎么跑起来的,于是花了很多时间查资料也弄不好,这导致浪费了很多时间,今天就使用这个简单的代码案例和简单的猫狗数据集,先让大家把代码跑通,再去学算法也不迟。
视频教程:《吐血录制,yolo11猫狗实时检测实战项目,从零开始写yolov11代码》,视频全程25分钟,或B站搜“AI莫大猫”。
吐血录制!yolo11猫狗实时检测实战项目,从零开始写yolov11代码,草履虫也能懂!
下图是猫类的实时检测效果:
下图是狗类的实时检测效果:
新人初步了解YOLO11的算法,其整体结构如下:
可以看出,这个网络主要由主干网络(Backbone)、中间的网络(Neck)和三个输出结构(Head)组成。
如何制作yolo11的数据集?先去找点视频网站,把视频下载下来,然后用Potplayer打开
Potplayer自带截图功能,可以直接按快捷键Ctrl+E对整个画面进行截图,对每个视频截取几十帧图像,我们即可获得源源不断的图片素材。也可以按Ctrl+W直接打开摄像头,拍摄画面,截取图片。
截取后,用labelme进行图像标注,即可获得训练数据集了。
整个yolo实战教程已经录制成了25分钟的视频,这里不写那么多文字了,大家感兴趣的花,就直接看视频了。
三、往期回顾
(1)yolo11猫狗实时检测实战项目,从零开始写yolov11代码https://blog.csdn.net/qq191513/article/details/144406259 (2)yolo实战:从零开始学yolo之yolov1的技术原理
https://blog.csdn.net/qq191513/article/details/144415634 (3)YOLOv1训练过程,新手入门
https://blog.csdn.net/qq191513/article/details/144419003 高清动画,3分钟揭秘神经网络技术原理
https://blog.csdn.net/qq191513/article/details/144456286
Transfermer的Q、K、V设计的底层逻辑https://blog.csdn.net/qq191513/article/details/142053621
(4)YOLOv2和yolov1的差异https://blog.csdn.net/qq191513/article/details/144457349 (13)10张结构图,深入理解YOLOv11算法各个模块
https://blog.csdn.net/qq191513/article/details/144474543