Transfermer的Q、K、V设计的底层逻辑

Transfermer的Q、K、V的设计思想

​ Transformer模型中的注意力机制使得模型能够捕捉序列中的长距离依赖关系,并且提高了模型处理复杂任务的能力。这个注意力机制包含了自注意力(Self-Attention)和多头注意力(Multi-Head Attention)。

一、用二维表格来存储句子内部蕴含的信息

​ 这里先举一个翻译的例子。

中文句子: “我喜欢在周末去公园散步。”

英文翻译: “I like to take a walk in the park on weekends.”

​ 我们可以看出中文句子的"周末"和”公园“是放在”散步“之前的,也就是把时间、地点放在动作之前

​ 再看看英文的表示方式,单词park和weekends放在了take a walk之后,也就是把时间、地点放在动作之后

​ 这一前一后的,也体现了中英文之间的差异。也就是说,翻译不仅仅只是把中文的词语翻译成英文单词这么简单,还得顾及不同语言之间的语法、词性是怎样的。语法就是研究主语 、谓语 、状语 、宾语之类的东西;词性属于时间、地点和动作中的哪一种。只有领悟到句子内部词与词之间的有什么样的关联,才能根据语法规则,正确翻译出句子。

​ 机器想要成功翻译出这句话,可以用数值表示下词与词之间的相关程度。我们可以先手工建立一个假设性的二维表格,其中每一行代表一个词对句子中所有词(包括它自己)的相关程度。

查询\键喜欢周末公园散步
-0.90.10.10.10.10.1
喜欢0.9-0.10.10.10.10.9
0.10.1-0.90.10.10.1
周末0.10.10.9-0.10.10.9
0.10.10.10.1-0.90.1
公园0.10.10.10.10.9-0.9
散步0.10.90.10.90.10.9-

​ 显然,根据这个二维表格这些数值的大小,它告诉我们如下信息:

  • 第一行:“我”和“喜欢”的权重最大,因为“我”是执行动作的主体,“喜欢”是描述主体偏好的动词。
  • 第二行:“喜欢”和“散步”的权重最大,因为“散步”是“喜欢”的宾语,是动作的直接对象。
  • 第三行:“在”只和“周末”的权重最大,因为“在”通常与时间状语连用,这里指的是“周末”。
  • 第四行:“去”只和“公园”的权重最大,因为“去”表示方向,而“公园”是动作发生的地点。
  • 第五、六行:“周末”、“公园”和“散步”三个权重最大,因为“周末”提供了时间信息,“公园”提供了地点信息,“散步”是主要动作。

​ 我们可以根据表格中数值的大小强调重要的,忽略不重要的。例如最后一条权重:“周末”、“公园”和“散步”三个权重最大。既然权重大,这说明模型需要重点花费脑力,也就是注意力,去思考这些存在强关联的词应该如何进行翻译,从而确保翻译后的句子在语义上与原文一致。首先,模型会根据每个词的上下文信息生成相应的英文翻译;接着在生成翻译的过程中,模型会应用自注意力机制中得到的权重,给予那些高权重的词更多的关注,以确保翻译的准确性和流畅性;最后进行模型可能会进行一些后处理步骤,如调整词序、应用语言模型等,以进一步提高翻译的自然度和准确性。这样,即使在长句子或复杂结构中,模型也能够生成准确和自然的翻译。

二、关联程度的意义

​ 通过表格的参数大小,知道二维表格中词与词之间的关联程度,对于正确翻译至关重要。这种关联程度反映了源语言句子中的每个词如何影响目标语言句子中的翻译和语义表达。以下是这种关联程度对正确翻译的一些关键影响:

  1. 上下文理解:通过分析关联程度,模型可以更好地理解每个词在上下文中的含义。这对于处理多义词和短语尤其重要,因为它们的意义取决于它们所处的上下文。

  2. 保持语义一致性:正确的翻译需要保持原文的语义一致性。通过理解词与词之间的关联程度,模型可以确保翻译后的句子在语义上与原文保持一致。

  3. 处理长距离依赖:在长句子中,某些词汇之间可能存在长距离的依赖关系。通过分析词与词之间的关联程度,模型可以捕捉并正确处理这些依赖关系,从而生成流畅且准确的翻译。就像上面翻译的句子,“喜欢”和“散步”这两个词的位置非常远,我们设置高权重,就是为了能够注意到“散步”是“喜欢”的直接对象。

  4. 改善句子结构:不同语言之间的句子结构可能存在差异。通过理解关联程度,模型可以更自然地调整句子结构,使其符合目标语言的语法和表达习惯。

  5. 提高翻译的准确性:准确的翻译需要精确地传达原文的意思。通过分析关联程度,模型可以更准确地选择词汇和短语,从而提高翻译的整体准确性。

  6. 增强可读性:翻译不仅要准确,还要易于理解。通过考虑关联程度,模型可以生成更自然、更符合目标语言读者阅读习惯的文本。

  7. 适应不同的语言特性:不同的语言有不同的表达方式和语言特性。通过分析关联程度,模型可以更好地适应这些特性,生成更符合目标语言表达习惯的翻译。

三、自动设计二维表格

​ 在实际操作中,Transformer模型通过自注意力机制自动学习这些关联程度,无需人工设计这种二维表格。模型通过训练大量的双语文本数据,学习到如何根据上下文正确地翻译每个词。这种学习过程使得模型能够理解复杂的语言结构和语义关系,从而在机器翻译任务中取得优异的性能。

​ Transformer模型的诞生正是和上述表格的设计理念不谋而合,它所拥有的查询(Query, Q)、键(Key, K)模块是自注意力机制的核心组成部分,它们共同工作以理解句子中的每个词如何与句子中的其他词相互关联。

1、Transformer模型查询(Query, Q)、键(Key, K)的含义:

  1. 查询(Query, Q)
    • Q向量代表当前正在处理的词(或词片段)在句子中的角色或意图,即它想要从句子的其他部分获取哪些信息。
  2. 键(Key, K)
    • K向量代表句子中每个词的重要性或相关性,即它们对当前处理的词(Q)的需求满足程度。

2、Transformer模型如何反映在表格中:

  • 表格中的行代表作为Q的词,即当前正在处理的词。
  • 表格中的列代表作为K的词,即句子中每个词的相关性度量。
  • 表格中的值代表Q与K之间的相似度得分,这些得分通过点积计算得出,并通过softmax函数归一化,范围在0到1之间。这些得分反映了行和列代表的词之间的关联性。

​ 可以说,上述表格展示了Transformer模型的查询(Query, Q)和键(Key, K)之间的关联性得分。为了得到Q、K,我们有权重矩阵 W Q W^Q WQ W K W^K WK,这些矩阵在训练过程中学习得到,用于将输入向量转换为Q、K向量。

  1. 计算Q、K:对于序列中的每个输入向量 $ x_i$,我们分别通过与权重矩阵相乘来计算Q、K:
    Q = X W Q K = X W K Q = XW^Q \\ K = XW^K Q=XWQK=XWK

  2. 注意力得分:接下来,我们计算Q和K之间的相似度得分,这是通过Q和K的点积得到的,然后通常使用缩放因子$ \frac{1}{\sqrt{d_k}}$ 来防止点积结果过大,其中$ d_k$是键向量的维度:
    Attention Scores = Q K T d k \text{Attention Scores} = \frac{QK^T}{\sqrt{d_k}} Attention Scores=dk QKT

  3. 权重分配:使用softmax函数将注意力得分归一化,得到权重分配:
    Attention Weights = softmax ( Attention Scores ) \text{Attention Weights} = \text{softmax}(\text{Attention Scores}) Attention Weights=softmax(Attention Scores)

​ 我们完全可以将所得的Attention Weights比做是上述二维表格,这个表格展示了在Transformer模型的自注意力机制中,序列中每个元素(词或词片段)对其他所有元素的注意力分布。

​ 至此,计算得到的注意力权重 Attention Weights \text{Attention Weights} Attention Weights就是我们要的二维表格,只要经过反向传播,训练矩阵权重矩阵 W Q W^Q WQ W K W^K WK,这张二维表格就会被设计得越来越精妙。

四、Transformer的Q和K就是名字不同而已,最后都是两个矩阵相乘,之所以分谁是Q谁是K,无非就是人的主观意识强加上去的,因此无所谓谁是Q谁是K,对吗?

​ 虽然从数学的角度来看,Q和K在计算过程中是对称的,从数学公式上看,Q和K可以互换,但实际上它们在模型中扮演的角色是不同的。Q是当前元素的表示,而K是序列中其他元素的表示。这种区分是必要的,因为它们在模型中的作用和意义不同。将它们视为不同的实体有助于我们更好地理解和设计模型。

五、计算哪些值需要重点关注

​ 在Transformer模型中,使用Attention Weights与Value (V) 相乘的过程可以被理解为利用Attention Weights所包含的信息,去关注哪些Value值需要得到重点关注,以生成新的特征表示。
Output = Attention Weights ⋅ V \text{Output} = \text{Attention Weights} \cdot V Output=Attention WeightsV
​ 最终输出也是一个 ( n ) 维向量,每个元素是通过对 ( V ) 加权求和得到的。这个过程在物理意义上并不直接对应于现实世界的物理现象,但从信息处理和数据表示的角度来看,它具有重要的意义:

  1. 信息整合:Attention Weights 表示了输入序列中不同元素之间的相互关系和重要性。通过与V相乘,模型能够整合来自序列各个部分的信息,生成一个包含全局上下文信息的特征表示。

  2. 上下文敏感性:每个元素的新特征表示不仅包含了它自身的信息,还包含了它与其他元素的关系信息。这种上下文敏感的特征表示使得模型能够更好地理解和处理语言的复杂性,如一词多义、句法结构和语义角色等。

  3. 动态关注:Attention机制允许模型动态地关注输入序列中对当前任务最重要的部分。这意味着模型可以根据任务的需要,自动调整其关注点,从而提高处理效率和准确性。

  4. 特征增强:通过加权求和的方式,模型能够增强那些对当前任务更重要的特征,同时抑制不那么重要的信息。这有助于模型在有限的计算资源下,更加聚焦于关键信息。

  5. 数据压缩与抽象:在某种程度上,这个过程类似于数据压缩和特征抽象。模型通过Attention机制从大量的输入数据中提取出最有价值的信息,筛掉没用的信息,并将其压缩成更紧凑、更抽象的特征表示。

  6. 模拟人类注意:从认知科学的角度来看,Attention机制模拟了人类在处理信息时的注意力分配方式。人类在理解语言时会根据上下文和任务需求,动态地关注信息的不同部分。Transformer模型通过类似的机制来处理语言数据。

​ 通过这种方式,Transformer模型能够更有效地捕捉和利用输入数据中的信息,从而在各种自然语言处理任务中取得优异的性能。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值