GBDT+LR推荐模型

一.简介

由facebook提出的,综合利用用户自身特征、物品自身特征和上下文信息的推荐模型。

二、LR模型(逻辑回归)

                               线性回归   +   sigmoid函数映射 =  逻辑回归
  • 逻辑回归假设数据服从伯努利分布,通过极大化似然函数的方法,运用梯度下降来求解参数,来达到将数据二分类的目的。
  • 逻辑回归模型将推荐问题转化为点击率预估问题
    在这里插入图片描述

1.目标函数:

在这里插入图片描述
求导后,更新w,进行多次迭代:
在这里插入图片描述

三、GBDT模型

1.原理

加法模型,不断减小误差
在这里插入图片描述

2.数学公式

在这里插入图片描述

四、GBDT+LR模型

在这里插入图片描述
待补充….

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值