一.简介 由facebook提出的,综合利用用户自身特征、物品自身特征和上下文信息的推荐模型。 二、LR模型(逻辑回归) 线性回归 + sigmoid函数映射 = 逻辑回归 逻辑回归假设数据服从伯努利分布,通过极大化似然函数的方法,运用梯度下降来求解参数,来达到将数据二分类的目的。逻辑回归模型将推荐问题转化为点击率预估问题 1.目标函数: 求导后,更新w,进行多次迭代: 三、GBDT模型 1.原理 加法模型,不断减小误差 2.数学公式 四、GBDT+LR模型 待补充….