Jetson TX2各种功率模式运行YOLOv3-Tiny

目录

1 Jetson TX2各种功率模式介绍

modemode nameGPU Denver 2频率AM57频率
0Max-N22.0 GHz42.0GHz
1Max-Q0/41.2 GHz
2Max-P-Core-All21.4 GHz41.4 GHz
3Max-P-ARM0/42.0 GHz
4Max-P-Denver22.0 GHz0/

2 Jetson TX2各种功率模式的切换与查询

  • 首先,开启高功率模式
sudo  ~/jetson_clocks.sh
  • 查询当前工作模式
sudo nvpmodel -q verbose
  • 更改工作模式为0,只需要修改-m标识符后面的数字即可
sudo nvpmodel -m 0

2 使用YOLOv3-Tiny评测各种功率

所使用的评测素材为一段1276x668的H.264编码的MP4格式的行车记录视频,共有3分钟。使用的算法是在BDD100K数据集训练好的YOLOv3-Tiny,评测结果如下:

modemode nameGPU Denver 2频率AM57频率检测帧率
0Max-N22.0 GHz42.0GHz~24 FPS
1Max-Q0/41.2 GHz~16 FPS
2Max-P-Core-All21.4 GHz41.4 GHz~20 FPS
3Max-P-ARM0/42.0 GHz~12 FPS
4Max-P-Denver22.0 GHz0/~8 FPS

在运行时,通过命令sudo ~/tegrastats查看TX2的状态,当不运行高功率模式时,输出如下:

RAM 2276/7846MB (lfb 1151x4MB) CPU [59%@1341,82%@1420,85%@1419,57%@1346,50%@1342,51%@1344] EMC_FREQ 38%@1600 GR3D_FREQ 78%@1122 APE 150 MTS fg 2% bg 1% BCPU@34C MCPU@34C GPU@35.5C PLL@34C Tboard@28C Tdiode@33.5C PMIC@100C thermal@34.4C VDD_IN 10417/10543 VDD_CPU 2288/2262 VDD_GPU 3509/3598 VDD_SOC 992/1042 VDD_WIFI 76/19 VDD_DDR 2487/2531

当运行高功率模式0时,输出如下:

RAM 2247/7846MB (lfb 1136x4MB) CPU [55%@1882,57%@2011,75%@2014,58%@1881,50%@1882,62%@1881] EMC_FREQ 40%@1866 GR3D_FREQ 99%@1300 APE 150 MTS fg 1% bg 0% BCPU@42C MCPU@42C GPU@43.5C PLL@42C Tboard@34C Tdiode@42.25C PMIC@100C thermal@42.9C VDD_IN 15352/15314 VDD_CPU 4036/4283 VDD_GPU 5407/5236 VDD_SOC 1523/1485 VDD_WIFI 0/0 VDD_DDR 3214/3137

主要参数说明如下:

RAM  就是内存占用

cpu  当然就是CPU占用率了,TX2一共6个核,,我再之前一篇如何配置中说过

EMC – external memory controller, 就是外存控制器    单位  bus%@MHz

AVP – audio/video processor, TX2 自带的音频视频ASIC处理器  单位 processor%@MHz

VDE – video decoder engine,  TX2 带有视频编解码hevc的加速器   %MHz

GR3D – GPU, processor,      GPU的主频      %@MHz
以下是将 Jetson Nano 部署到 YOLOv4-tiny 的详细过程: 1. 安装 JetPack JetPack 是 NVIDIA 的软件套件,其中包含 Jetson Nano 的操作系统、CUDA、cuDNN、TensorRT 等组件。可以从 NVIDIA 官网下载并安装。安装过程中需要选择 CUDA 和 cuDNN 的版本,需要与 YOLOv4-tiny 使用的版本相匹配。 2. 克隆 YOLOv4-tiny 仓库 使用以下命令从 GitHub 克隆仓库: ``` git clone https://github.com/AlexeyAB/darknet.git ``` 3. 编译 YOLOv4-tiny 在克隆的仓库目录下,执行以下命令编译 YOLOv4-tiny: ``` cd darknet make ``` 编译过程可能需要较长时间,取决于 Jetson Nano 的性能。 4. 下载权重文件 从 YOLOv4-tiny 的官方仓库中下载权重文件,可以使用以下命令: ``` wget https://github.com/AlexeyAB/darknet/releases/download/darknet_yolo_v4_pre/yolov4-tiny.weights ``` 将权重文件保存到 darknet 目录下。 5. 测试 YOLOv4-tiny 在 darknet 目录下,执行以下命令测试 YOLOv4-tiny: ``` ./darknet detector test cfg/coco.data cfg/yolov4-tiny.cfg yolov4-tiny.weights data/dog.jpg ``` 该命令会使用 YOLOv4-tiny 模型检测 data/dog.jpg 中的狗,并输出检测结果。 6. 部署到 Jetson Nano 将编译好的 darknet 目录复制到 Jetson Nano 上,使用以下命令测试 YOLOv4-tiny: ``` ./darknet detector test cfg/coco.data cfg/yolov4-tiny.cfg yolov4-tiny.weights data/dog.jpg -thresh 0.4 ``` 这里添加了 -thresh 0.4 参数,用于过滤置信度低于 0.4 的检测结果。 以上就是将 Jetson Nano 部署到 YOLOv4-tiny 的详细过程。
评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值